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Abstract
This paper presents an efficient and scalable framework for Range

Filtered Approximate Nearest Neighbors Search (RF-ANNS) over

high-dimensional vectors associated with attribute values. Given

a query vector 𝑞 and a range [𝑙, ℎ], RF-ANNS aims to find the

approximate 𝑘 nearest neighbors of 𝑞 among data whose attribute

values fall within [𝑙, ℎ]. Existing methods including pre-, post-, and

hybrid filtering strategies that perform attribute range filtering

before, after, or during the ANNS process, all suffer from significant

performance degradationwhen query ranges shift. Though building

dedicated indexes for each strategy and selecting the best one based

on the query range can address this problem, it leads to index

consistency and maintenance issues.

Our framework, called UNIFY, constructs a unified Proximity

Graph-based (PG-based) index that seamlessly supports all three

strategies. In UNIFY, we introduce SIG, a novel Segmented Inclusive
Graph, which segments the dataset by attribute values. It ensures

the PG of objects from any segment combinations is a sub-graph of

SIG, thereby enabling efficient hybrid filtering by reconstructing

and searching a PG from relevant segments. Moreover, we present

Hierarchical Segmented Inclusive Graph (HSIG), a variant of SIG

which incorporates a hierarchical structure inspired by HNSW to

achieve logarithmic hybrid filtering complexity. We also implement

pre- and post-filtering for HSIG by fusing skip list connections

and compressed HNSW edges into the hierarchical graph. Experi-

mental results show that UNIFY delivers state-of-the-art RF-ANNS

performance across small, mid, and large query ranges.
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1 Introduction
In recent years, Approximate Nearest Neighbors Search (ANNS)

has drawn great attention for its fundamental role in data mining

[25, 38], recommendation systems [36], and retrieval-augmented

generation (RAG) [19], etc. Numerous ANNS methods [2, 7, 23,

26, 37, 41, 50] have been developed to efficiently retrieve similar

unstructured objects (e.g., text, images, and videos) by indexing and

searching their high-dimensional feature vectors [25]. However,

ANNS fails to support many real-world scenarios where users need

to filter objects not only by feature similarities but also by certain

constraints. For example, Google Image Search allows users to

upload an image and search for similar images within a specific

period. Likewise, e-commerce platforms such as Amazon enable

customers to find visually similar products within a price range.

The above queries can be formulated as the range filtered approx-
imate nearest neighbors search (RF-ANNS) queries. Consider a vector
dataset where each vector is associated with a numeric attribute

(e.g., date, price, or quantity). Given a query vector 𝑞 and a range

[𝑙, ℎ], RF-ANNS returns𝑞’s approximate 𝑘 nearest neighbors among

the data whose attributes are within the range [𝑙, ℎ]. Several studies
[33, 39, 40, 43, 47] have been carried out on the RF-ANNS problem,

which can be categorized into the following three strategies based

on when the attribute filtering is performed.

Strategy A: Pre-Filtering. This strategy performs ANNS after the

attribute filtering. For example, Alibaba ADBV [43] integrates the

pre-filtering strategy using a B-tree to filter attributes, followed

by a linear scan on the raw vectors or PQ [16] codes. Milvus [39]

partitions data by attributes and builds ANNS indexes for subsets.

RF-ANNS is done by first filtering out partitions covering the query

range, then performing ANNS on subset indexes. This strategy is

efficient for small query ranges, but it does not scale well with

larger ranges due to the linearly increasing overhead for scanning

qualified vectors or indexes.

Strategy B: Post-Filtering. This strategy uses an ANNS index

to find 𝑘′ candidate vectors (𝑘′ > 𝑘), then filters by attributes to

obtain the final top-𝑘 results. Vearch [20] and NGT [46] apply this

strategy, which can be easily extended to popular ANNS indexes

like HNSW [23] and IVF-PQ [16, 18]. This method is efficient for

large query ranges. In the extreme case where the query range

covers 100% of objects, RF-ANNS becomes equivalent to ANNS,

making post-filtering efficient. However, if the query range is small,
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the ANNS stage may struggle to collect enough qualified candidates,

resulting in sub-optimal performance.

Strategy C: Hybrid Filtering. In Strategy A or B, an RF-ANNS

query is decomposed into two sub-query systems for attribute fil-

tering and ANNS processing. In contrast, Strategy C employs a

single data structure to index and search vectors and attributes

simultaneously. Several studies [10, 40] propose to employ state-of-

the-art Proximity Graphs (PGs) [41], e.g., HNSW [23] and Vahama

[10, 15], to implement Strategy C for ANNS with categorical filtra-

tion (searching similar vectors whose attributes match a label). The

recent study SeRF [52] is the first work implementing Strategy C

with PGs for RF-ANNS. It compresses multiple HNSWs into a hy-

brid index. RF-ANNS is carried out by reconstructing and searching

an HNSW index only containing objects in the query range. SeRF

achieves state-of-the-art performance on query ranges from 0.3% to

50%. However, it lags behind Strategy A and B for smaller and larger

ranges due to the overhead of HNSW reconstruction. Additionally,

SeRF lacks support for incremental data insertion, limiting its use

in scenarios with new object arrivals.

Problems and Our Solutions. As discussed above, existing meth-

ods suffer from two challenges: sub-optimal performance when query
range shifts and lack of incremental data insertion support. A trivial

solution is to build dedicated indexes for each strategy and adap-

tively select the best one based on the query range. However, this

requires extra effort to ensure data consistency across multiple

indexes, leading to high maintenance costs [40]. To tackle these

problems, we propose a UNIFY framework combining Strategies

A, B, and C into a unified PG-based index supporting incremental

insertion. UNIFY is designed to enhance RF-ANNS performance by

prioritizing the following key objectives: (O1) enabling efficient hy-

brid filtering, (O2) supporting incremental index construction, (O3)

integrating pre- and post-filtering strategies, and (O4) implement-

ing a range-aware selection of search strategies. The key techniques

in UNIFY to achieve these objectives include:

(1) Segmented Inclusive Graph (SIG) (O1). For efficient hybrid fil-

tering, we introduce a novel graph family named SIG. SIG segments

the dataset based on attribute values and theoretically guarantees

that the PG of objects from any combination of segments is a sub-

graph of SIG. For example, segment a dataset D into three subsets

D1,D2, andD3, and letG(X) denote the PG constructed on dataset

X. The PGs G(D1), G(D2), G(D1 ∪ D2), . . . , G(D1 ∪ D2 ∪ D3)
are all included in SIG. This characteristic allows us to reconstruct

and search a small PG from relevant segments intersected with the

query range to enhance RF-ANNS performance.

(2) Hierarchical Segmented Inclusive Graph (HSIG) (O1 & O2).
Based on SIG, we introduce HSIG, a hierarchical graph inspired by

HNSW. Similar to HNSW, HSIG is built incrementally. Besides, as a

variant of SIG, HSIG can approximately ensure that the HNSW of

objects from any combination of segments is a sub-graph of HSIG.

By reconstructing and searching an HNSW for relevant segments,

we achieve 𝑂 (log(𝑛′)) RF-ANNS time complexity, where 𝑛′ is the
number of objects in those segments.

(3) Fusion of skip list connections (O3). The skip list is a classic

attribute index optimized for one-dimensional key-value lookup

and range search (see Section 2 for more details). We observe that

the skip list shares a similar hierarchical structure with our HSIG.

Inspired by this, we fuse the skip list connections that reflect the

order of attribute values into the hierarchical graph structure to

form a hybrid index. By navigating these skip list connections,

we can efficiently select objects within the query range, thereby

implementing efficient pre-filtering.

(4) Global edge masking (O3). Recall that post-filtering relies on
a global ANNS index over the entire dataset. HSIG ensures that

the global HNSW is approximately a sub-graph of it, meaning that

each node’s global HNSW edges are included within its HSIG edges.

We employ an edge masking algorithm to mark the global HNSW

edges with a compact bitmap. Navigated by these bitmap-marked

edges, we can perform ANNS over the global HNSW to efficiently

support post-filtering.

(5) Range-aware search strategy selection (O4). Inspired by the

effectiveness of Strategies A, B, and C for different query ranges,

we developed a heuristic for range-aware strategy selection. Let 𝑌

denote the cardinality of objects that fall within the query range,

our heuristic is: use Strategy A for 𝑌 ≤ 𝜏𝐴 , Strategy B for 𝑌 ≥ 𝜏𝐵 ,

and Strategy C for 𝜏𝐴 < 𝑌 < 𝜏𝐵 . Here 𝜏𝐴 and 𝜏𝐵 serve as thresholds

to distinguish the ranges for which each strategy is most effective,

and they can be derived from history data statistics. In this paper,

we run a set of sample queries to collect statistics and determine 𝜏𝐴
and 𝜏𝐵 . Experimental results show that this heuristic is effective.

Contributions. Our contributions are summarized as follows:

• We introduced SIG, a novel graph family that segments the

dataset based on attribute values, ensuring efficient hybrid

filtering by allowing the reconstruction and search of a PG

from relevant segments.

• We developed HSIG, a novel hybrid index that supports

efficient hybrid filtering with logarithmic time complexity

for RF-ANNS and enables incremental data insertion.

• We integrated novel auxiliary structures, including skip

list connections and edge masking bitmaps, into HSIG to

support both pre- and post-filtering strategies. To the best

of our knowledge, HSIG is the first index supporting pre-,

post-, and hybrid filtering simultaneously.

• Experiments on real-world datasets demonstrate that our

approach significantly outperforms state-of-the-art meth-

ods for query ranges from 0.1% to 100% by up to 2.29 times.

2 PRELIMINARIES
2.1 Problem Definition
This paper considers a datasetD with attributed vectors and nearest

neighbors search (NNS) with attribute constraints. Specifically, let𝐴

be an attribute (e.g., date, price, or quantity). We use 𝑣 [𝐴] to denote
the attribute value associated with vector 𝑣 . The range filtered

nearest neighbors search (RF-NNS) problem is defined as:

Definition 1 (RF-NNS). Given a dataset D of 𝑛 attributed vec-
tors {𝑣1, 𝑣2, . . . , 𝑣𝑛}, a distance function Γ(·, ·), and a query 𝑄 =

(𝑞, [𝑙, ℎ], 𝑘) with 𝑞 as the query vector, an integer 𝑘 from 1 to 𝑛, and
[𝑙, ℎ] a real-valued query range, RF-NNS returns the 𝑘𝑁𝑁 (𝑞,R), a
subset ofR = {𝑣 | 𝑣 ∈ D and 𝑙 ≤ 𝑣 [𝐴] ≤ ℎ}. For any 𝑜 ∈ 𝑘𝑁𝑁 (𝑞,R)
and any𝑢 ∈ R\𝑘𝑁𝑁 (𝑞,R), it holds that Γ(𝑜, 𝑞) < Γ(𝑢, 𝑞). If |R | < 𝑘 ,
all objects in R are returned.

Due to the "curse of dimensionality" [14], exact NNS in high-

dimensional space is inefficient [21]. As a result, most research
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Algorithm 1: ANNSearch
Input :G: HNSW layer; 𝑞: query vector; 𝑒𝑝 : entry point; 𝑘 :

an integer.

Output :𝑞’s approximate 𝑘 nearest neighbors on G.

1 push 𝑒𝑝 to the min-heap 𝑐𝑎𝑛𝑑 in the order of distance to 𝑞;

2 push 𝑒𝑝 to the max-heap 𝑎𝑛𝑛 in the order of distance to 𝑞;

3 mark 𝑒𝑝 as visited;

4 while |𝑐𝑎𝑛𝑑 | > 0 do
5 𝑜 ← pop the nearest object to 𝑞 in 𝑐𝑎𝑛𝑑 ;

6 𝑢 ← the furthest object to 𝑞 in 𝑎𝑛𝑛;

7 if Γ(𝑜, 𝑞) > Γ(𝑢, 𝑞) then break;
8 foreach unvisited 𝑣 ∈ G[𝑜] do
9 mark 𝑣 as visited;

10 𝑢 ← the furthest object to 𝑞 in 𝑎𝑛𝑛;

11 if Γ(v,q) < Γ(u,q) or |𝑎𝑛𝑛 | < k then
12 push 𝑣 to 𝑐𝑎𝑛𝑑 and 𝑎𝑛𝑛;

13 if |𝑎𝑛𝑛 | > 𝑘 then pop 𝑎𝑛𝑛;

14 return 𝑎𝑛𝑛;

focuses on approximate nearest neighbors search (ANNS), which

reports approximate results with an optimized recall. Similarly, this

paper studies the RF-ANNS problem, which returns an approximate

result set 𝑘𝑁𝑁 ′ (𝑞,R) with an optimized recall:

𝑟𝑒𝑐𝑎𝑙𝑙 =
|𝑘𝑁𝑁 ′ (𝒒,R) ∩ 𝑘𝑁𝑁 (𝒒,R)|

min(𝑘, |R |) . (1)

2.2 Proximity Graph
A Proximity Graph (PG) [41] treats a vector as a graph node, with

connections built based on vector proximity. Various greedy heuris-

tics are proposed to navigate the graph for ANNS [41]. In the fol-

lowing, we introduce two PGs related to our work.

𝑘 Nearest Neighbor Graph (𝑘NNG) [29]. Given a dataset D, a

𝑘NNG is built by connecting each vector 𝑣 to its 𝑘 nearest neigh-

bors, 𝑘𝑁𝑁 (𝑣,D \ {𝑣}). 𝑘NNG limits the number of edges per node

to at most 𝑘 , making it suitable for memory-constrained environ-

ments. However, 𝑘NNG focuses on local connections and does not

guarantee global connectivity, leading to sub-optimal performance

compared to state-of-the-art PGs such as HNSW [23].

Hierarchical Navigable Small World Graph (HNSW) [23].

HNSW is inspired by the 1D probabilistic structure of the skip list

[32], where each layer is a linked list ordered by 1D values. The bot-

tom layer includes all data objects, while the upper layers contain

progressively fewer objects. HNSW extends this structure by re-

placing linked lists with PGs, enabling efficient hierarchical search.

The hierarchical structure of HNSW is similar to that in Figure 4.

As outlined in Algorithm 1, HNSW uses a greedy approach to find

the 𝑘NN for query vector 𝑞 in each layer. The neighbors of each

node 𝑣𝑖 in a given layer G are stored in adjacency lists G[𝑣𝑖 ]. The
search starts at an entry point 𝑒𝑝 , the most recently inserted vector

at the topmost layer [23]. It repeatedly selects the nearest object

𝑜 to 𝑞 from 𝑐𝑎𝑛𝑑 (Line 5), adds 𝑜’s unvisited neighbors to 𝑐𝑎𝑛𝑑

(Lines 8–12), and updates 𝑎𝑛𝑛 (Lines 11–13). The search terminates

Algorithm 2: HierarchicalANNS
Input :H: HNSW; 𝑞: query vector; 𝑒𝑝: entry point; 𝑒 𝑓 :

enlarge factor; 𝑘 : an integer.

Output :𝑞’s approximate 𝑘 nearest neighbors.

1 𝐿 ← max level of H;
2 foreach 𝐿 ≥ 𝑖 ≥ 1 do

/* Search the 𝑖-th layer H𝑖. */

3 𝑎𝑛𝑛 ←ANNSearch(H𝑖
, 𝑞, 𝑒𝑝 , 1);

4 𝑒𝑝 ←the nearest object to 𝑞 in 𝑎𝑛𝑛;

/* Search the bottom layer H0. */

5 𝑎𝑛𝑛 ←ANNSearch(H0
, 𝑞, 𝑒𝑝 , 𝑒 𝑓 );

6 return top-𝑘 nearest objects to 𝑞 in 𝑎𝑛𝑛;

Algorithm 3: InsertLayer
Input :G: HNSW layer; 𝑣 : the object to insert; 𝑒𝑝: entry

point;𝑀 : the maximum degree; 𝑒 𝑓 𝐶𝑜𝑛𝑠: number

of candidate neighbors.

Output : the updated graph.

1 𝑎𝑛𝑛 ← ANNSearch(G, 𝑣 , 𝑒𝑝 , 𝑒 𝑓 𝐶𝑜𝑛𝑠)
2 G[𝑣] ← Prune(𝑣 , 𝑎𝑛𝑛,𝑀)

3 foreach 𝑜 ∈ G[𝑣] do
4 add 𝑣 to G[𝑜];
5 if |G[𝑜] | > 𝑀 then G[𝑜] ← Prune(𝑜 , G[𝑜],𝑀) ;

6 return G;

when all nodes in 𝑐𝑎𝑛𝑑 are farther from 𝑞 than those in 𝑎𝑛𝑛. As

shown in Algorithm 2, the hierarchical search in HNSW begins at

a coarse layer to identify promising regions and progressively de-

scends to finer layers for detailed exploration. To improve accuracy,

Algorithm 2 uses the parameter 𝑒 𝑓 (𝑒 𝑓 > 𝑘), initially exploring

𝑒 𝑓 neighbors to broaden the search region, and finally returns the

top-𝑘 results.

HNSW is built incrementally based on Algorithm 3. When in-

serting a new object 𝑣 into an HNSW layer, the process begins by

searching for its top 𝑒 𝑓 𝐶𝑜𝑛𝑠 nearest neighbors using theANNSearch
algorithm (Line 1). The Prune heuristic is then applied to limit 𝑣 ’s

connections to a maximum of𝑀 (Line 2). The value of𝑀 , typically

set between 5 and 48 [23], balances accuracy and efficiency, with

its optimal value determined experimentally. The Prune method

initially sorts 𝑣 ’s candidate neighbors by distance. For each candi-

date 𝑟 , if there exists a neighbor 𝑒 that satisfies Γ(𝑣, 𝑟 ) > Γ(𝑒, 𝑟 ), 𝑟 is
pruned. Otherwise, an edge between 𝑣 and 𝑟 is inserted. The process

continues until 𝑣 has𝑀 neighbors. Additionally, 𝑣 is added to the

neighbor lists of its identified neighbors, with the Prune method ex-

ecuted for each to maintain the𝑀 connection limit (Lines 3–5). The

Prune strategy prevents the graph from becoming overly dense, en-

suring efficient navigation. HNSW achieves state-of-the-art ANNS

time complexity of 𝑂 (log𝑛) [41] and demonstrates top-tier prac-

tical performance indicated by various benchmarks [3, 21, 41]. It

also serves as the backbone for various vector databases such as

Pinecone [31], Weaviate [42], and Milvus [39].
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3 Segmented Inclusive Graph
We aim to develop a PG-based index that integrates three search

strategies and supports incremental construction. We start by dis-

cussing the design of a graph optimized for hybrid filtering. In

Section 3.1, we introduce the Segmented Inclusive Graph (SIG),

a novel graph family that leverages attribute segmentation and

graph inclusivity for efficient hybrid filtering. Section 3.2 discusses

the challenges of constructing an SIG using the basic PG structure

𝑘NNG as a case study and presents our practical solutions.

3.1 SIG Overview
Attribute Segmentation. Given a dataset of 𝑛 objects, RF-ANNS is

concerned only with the 𝑛′ objects within the query range, where

𝑛′ ≤ 𝑛. To efficiently filter out the qualified objects, we employ the

attribute segmentation method to reduce the search space. Assum-

ing that the attribute distribution remains stable, we first sample

objects from the dataset and sort them by their attribute values,

then apply an equi-depth histogram [30] to partition them. The

histogram bin boundaries define the attribute intervals for each

segment, partitioning the dataset into disjoint subsets with similar

size for further indexing.

Graph Inclusivity and SIG. After attribute segmentation, we

focus on designing a graph for efficient hybrid filtering. Since a

query range intersects a few segments, a straightforward approach

is to independently build PGs for each segment. For an RF-ANNS

query, we search the local PGs in intersected segments and merge

the results for the global 𝑘NN. However, this method results in

search time increasing linearly with the number of intersected

segments. State-of-the-art PGs offer an ANNS time complexity

of 𝑂 (log𝑛), suggesting sub-linear search time growth with the

number of intersected segments. For example, with 𝑆 segments,

searching multiple PGs scales as 𝑂 (𝑆 log( 𝑛
𝑆
)), while searching a

single PG containing all objects scales as 𝑂 (log𝑛). The ratio be-

tween them is 𝑆

(
1 − log𝑆

log𝑛

)
. Since 1 < 𝑆 ≪ 𝑛, this ratio is greater

than 1 but less than 𝑆 , indicating that searching across multiple PGs

is less efficient than searching a single PG containing all objects.

Inspired by this, we introduce a novel graph family known as

the Segmented Inclusive Graph (SIG). An SIG ensures that the PG

of any segment combination is included in (i.e., is a sub-graph of)

the SIG. Leveraging this characteristic, termed graph inclusivity,
allows efficient hybrid filtering by reconstructing and searching

the smaller PG of a few segments covering the query range. Below,

we introduce the formal definitions of graph inclusivity and SIG.

Definition 2 (Graph Inclusivity and Segmented Inclusive

Graph). LetG(X) denote a PG constructed over the datasetX. Given
a datasetD segmented into 𝑆 disjoint subsets P={D1,D2, . . . ,D𝑆 }, a
segmented inclusive graph SIG(D) is a type of graph that possesses
the property of graph inclusivity defined as

∀𝑟 ∈ {1, 2, · · · , 𝑆}, ∀C ∈ P (𝑟 ) , G(
⋃
𝑒∈C

𝑒) ⊆ SIG(D), (2)

where P (𝑟 ) denotes all possible combinations of 𝑟 elements from P.

𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒 𝒗𝟓 𝒗𝟔 𝒗𝟕 𝒗𝟖

𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒 𝒗𝟓 𝒗𝟔 𝒗𝟕 𝒗𝟖

① 𝒌NNG edges of 𝒗𝟒 in 𝑫𝟏 ②	𝒌NNG edges of 𝒗𝟒 in 𝑫𝟐

③ 𝒌NNG edges of 𝒗𝟒 in 𝑫𝟏 ∪ 𝑫𝟐

Figure 1: Build multiple 𝑘NNGs exhaustively (𝑘 = 3).

𝒗𝟒
𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟔 𝒗𝟕𝒗𝟓

𝑮[𝒗𝟒]

𝑮 𝒗𝟒 [𝟏] 𝑮 𝒗𝟒 [𝟐]

Figure 2: Example of the segmented adjacency list (𝑘 = 3).

Example 1. Assume that P = {D1,D2,D3}, we have P (2) =
{{D1,D2}, {D1,D3}, {D2,D3}}. For one of the possible combina-
tions C = {D1,D2}, we have

⋃
𝑒∈C (𝑒) =D1 ∪ D2. It holds that

G(D1 ∪ D2) ⊆ SIG(D).

Based on Definition 2, we can derive an exhaustive SIG construc-

tion algorithm: build PGs for all possible segment combinations

and merge them into a single graph. While this guarantees graph

inclusivity, it faces significant computational challenges. With 𝑆

segments, the number of combinations is

∑𝑆
𝑖=1

(𝑆
𝑖

)
= 2

𝑆 − 1, and
the space complexity of SIG scales as 𝑂 (2𝑆 − 1), making the con-

struction of all PGs both computationally and spatially prohibitive
1
.

Thus, we propose a space-efficient SIG index that scales as 𝑂 (𝑆) in
the next section.

3.2 SIG-𝑘NNG
In this section, we conduct a case study on the basic PG structure

𝑘NNG to demonstrate the limitations of the exhaustive method.

Then, we introduce SIG-𝑘NNG, a novel graph structure that guaran-

tees inclusivity without exhaustively building all possible 𝑘NNGs.

Limitation of the Exhaustive Method. For each object 𝑣 in a

dataset D, constructing a 𝑘NNG involves adding a directed edge

(𝑣, 𝑜) for each object 𝑜 ∈ 𝑘𝑁𝑁 (𝑣,D \ {𝑣}). When the dataset is

divided into 𝑆 subsets by attribute segmentation, the exhaustive

method requires running the construction algorithm 2
𝑆 − 1 times.

Figure 1 illustrates an example. Here, the dataset D is divided into

two subsets D1 = {𝑣1, 𝑣2, 𝑣3, 𝑣4} and D2 = {𝑣5, 𝑣6, 𝑣7, 𝑣8}. We need

to build 𝑘NNGs (𝑘=3) for D1, D2, and D1 ∪D2, respectively. Such

exhaustive construction is unnecessary, as the 𝑘NN of a union is in-

herently within the individual 𝑘NN sets. For example, all objects in

𝑘𝑁𝑁 (𝑣4,D1 ∪ D2) can be found in 𝑘𝑁𝑁 (𝑣4,D1) ∪ 𝑘𝑁𝑁 (𝑣4,D2).
In other words, 𝑣4’s three edges in graph 3○ are already included in

graphs 1○ and 2○, making the construction of graph 3○ redundant.

1
In fact, for RF-ANNS, we only need to consider continuous segments, with potential

combinations totaling 0.5(𝑛2 − 𝑛) , which is also prohibitive. Since the conclusions in

this paper apply to both all segment combinations and continuous ones, we discuss

the harder scenario, i.e., all segment combinations, to maintain generality.
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Figure 3: Illustration of SIG-𝑘NNG’s inlusivity (𝑘 = 1).

Structure of SIG-𝑘NNG. Inspired by the prior observations, we

introduce SIG-𝑘NNG, a novel graph structure that achieves inclusiv-

ity without the need for exhaustive 𝑘NNG construction. SIG-𝑘NNG

uses a segmented adjacency list to storage the outgoing edges for

each object in the graph. As illustrated in Figure 2, given a dataset

D segmented into 𝑆 subsets D1, . . . ,D𝑆 , the adjacency list for any

object 𝑣 is divided into 𝑆 chunks. For example, the full adjacency

list G[𝑣4] of object 𝑣4 is segmented into two chunks G[𝑣4] [1] and
G[𝑣4] [2]. The 𝑖-th chunk stores only 𝑣 ’s 𝑘NN within D𝑖 . Based

on this design, to add SIG-𝑘NNG edges for 𝑣 , we perform 𝑘NN

searches 𝑆 times to find its neighbors in each subset, instead of

searching 2
𝑆 − 1 times across all subset combinations. In the fol-

lowing, we introduce the formal definition of SIG-𝑘NNG and prove

that SIG-𝑘NNG can exactly guarantee inclusivity.

Definition 3 (SIG-𝑘NNG). Given a dataset D segmented into
𝑆 disjoint subsets D1,D2, . . . ,D𝑆 , the SIG-𝑘NNG on D is defined
as F𝑘 (D) = (𝑉F, 𝐸F), where 𝑉F = D and 𝐸F =

⋃
𝑣∈D

⋃𝑆
𝑖=1 𝐸

𝑘
𝑖
(𝑣).

Here, 𝐸𝑘
𝑖
(𝑣) is the set of edges based on the 𝑖-th chunk of 𝑣 ’s adjacency

list, defined as 𝐸𝑘
𝑖
(𝑣) = {(𝑣, 𝑜) | 𝑜 ∈ 𝑘𝑁𝑁 (𝑣,D𝑖 \ {𝑣})}.

Inclusivity of SIG-𝑘NNG.We first present the following lemma,

which shows that the 𝑘NN of a union is inherently included in the

individual 𝑘NN sets.

Lemma 1. Given 𝑟 disjoint datasets D1,D2, . . . ,D𝑟 and their
union set U =

⋃𝑟
𝑖=1D𝑖 , it holds that ∀𝑣 ∈ U, 𝑘NN(𝑣,U \ {𝑣}) ⊆⋃𝑟

𝑖=1 𝑘𝑁𝑁 (𝑣,D𝑖 \ {𝑣}).

Based on Lemma 1, we derive the inclusivity of SIG-𝑘NNG, as

shown in Theorem 1. The proof is omitted, as it is straightforward

to follow.

Theorem 1. Let G𝑘 (X) and F𝑘 (X) denote a 𝑘NNG and SIG-
𝑘NNG for dataset X, respectively. Given a dataset D segmented
into 𝑆 disjoint subsets D1,D2, . . . ,D𝑆 , it follows that SIG-𝑘NNG
is a segmented inclusive graph. Specifically, for any 𝑟 distinct in-
tegers 𝑖1, 𝑖2, . . . , 𝑖𝑟 chosen from [1, 𝑆] with 1 ≤ 𝑟 ≤ 𝑆 , we have
G𝑘 (U) ⊆ F𝑘 (D), whereU =

⋃𝑟
𝑗=1D𝑖 𝑗 .

Example 2. Figure 3 demonstrates the inclusivity of SIG-𝑘NNG.
Given a dataset D = {𝑣1, 𝑣2, . . . , 𝑣8}, we assume the attribute of 𝑣𝑖 is
𝑖 for simplicity. The attribute space [1, 8] is divided into two disjoint
segments [1, 5) and [5, 8], leading to two subsetsD1 = {𝑣1, 𝑣2, 𝑣3, 𝑣4}
andD2 = {𝑣5, 𝑣6, 𝑣7, 𝑣8}. Graphs 1○~ 3○ represent the 𝑘NNGs forD1,
D2, and D1 ∪ D2, and the SIG-𝑘NNG for D is displayed in graph
4○. As illustrated, all three 𝑘NNGs are sub-graphs of the SIG-𝑘NNG.

4 Hierarchical Segmented Inclusive Graph
SIG-𝑘NNG offers an efficient approach to build an SIG with seg-

mented adjacency lists. Though it theoretically guarantees inclusiv-

ity, the underlying 𝑘NNG is not competitive with state-of-the-art
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Figure 4: Illustration of HSIG.

PGs like HNSW [23]. Additionally, SIG-𝑘NNG lacks support for

incremental insertion. In this section, we expand the basic idea

of SIG-𝑘NNG, introducing the Hierarchical Segmented Inclusive

Graph (HSIG), which uses HNSW as a building block to achieve

incremental construction and a logarithmic search complexity.

Figure 4 provides an overview of HSIG, showcasing a hierarchical

structure that follows the structure of HNSW and skip lists. HSIG

is a unified structure that indexes both vectors and attributes by

leveraging the strengths of vector-oriented HNSW and attribute-

oriented skip lists. For vector indexing, HSIG organizes the outgoing

edges of each object into chunks based on attribute segmentation,

inspired by SIG-𝑘NNG. Each chunk contains the edges of an HNSW

for the corresponding segment. Thus, the backbone graph of HSIG

can be seen as a set of HNSWs constructed for different segments

(e.g., the three HNSWs with different colors in Figure 4), which

are mutually connected with additional edges to ensure inclusivity.

Additionally, we incorporate the skip list into the backbone graph to

index attributes for efficient pre-filtering and introduce a compact

auxiliary structure to optimize post-filtering. The structure and

algorithms are detailed in Sections 4.1 and 4.2.

4.1 HSIG Construction
In this section, we describe the core structures of HSIG for hybrid,

pre-, and post-filtering sequentially. Then, we integrate them to

introduce the complete insertion algorithm.

Backbone Graph for Hybrid Filtering. Based on Theorem 1,

we present HSIG’s backbone graph, which is designed to ensure

inclusivity regarding HNSW and support efficient hybrid filtering.

As depicted in Algorithm 3, when inserting a new object 𝑣 into

an HNSW layer, the core operation involves finding 𝑣 ’s 𝑒 𝑓 𝐶𝑜𝑛𝑠

nearest neighbors and establishing up to𝑀 connections. This pro-

cedure is similar to 𝑘NNG’s construction, which finds 𝑘NN and

establish at most 𝑘 connections. Therefore, we use the segmented

adjacency list introduced by SIG-𝑘NNG to guarantee the inclusivity

for all possible HNSW connections. With 𝑆 segments, connections

are stored in 𝑆 chunks, with a maximum degree of 𝑀 per chunk.

The values of 𝑆 and𝑀 are experimentally determined, with default

values set to 8 and 16, respectively. Since each chunk contains the

HNSW connections in the corresponding segment, the objects and

connections in chunk 𝑗 form a sub-graph G𝑗 of the backbone graph

in HSIG. When inserting object 𝑣 that is located in segment 𝑖 , Al-

gorithm 4 outlines how to build 𝑣 ’s connections in segment 𝑗 at
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Algorithm 4: BackboneConnectionsBuild
Input :G: HSIG layer; 𝑒𝑝: entry point; 𝑣 : the object to

insert; 𝑖: index of the segment that 𝑣 [𝐴] belongs to;
𝑗 : index of the segment to insert;𝑀 : the maxinum

degree; 𝑒 𝑓 𝐶𝑜𝑛𝑠: number of candidate neighbors.

Output :𝑣 ’s approximate nearest neighbors in G𝑗 (a

sub-graph of G with only nodes and edges in

segment 𝑗 ).

1 𝑎𝑛𝑛 ← ANNSearch(G𝑗 , 𝑣 , 𝑒𝑝 , 𝑒 𝑓 𝐶𝑜𝑛𝑠);

2 foreach 𝑜 ∈ Prune(𝑣, 𝑎𝑛𝑛,𝑀) do
3 add (𝑣, 𝑜) to G[𝑣] [ 𝑗];
4 add (𝑜, 𝑣) to G[𝑜] [𝑖];
5 if | G[𝑜] [𝑖] |> 𝑀 then
6 G[𝑜] [𝑖] ← Prune(𝑜 , G[𝑜] [𝑖],𝑀);

7 return 𝑎𝑛𝑛;

an HSIG layer. First, we search for 𝑣 ’s 𝑒 𝑓 𝐶𝑜𝑛𝑠 nearest neighbors

in G𝑗 (Line 1) using ANNSearch (Algorithm 1), then select up to𝑀

neighbors using the Prune algorithm. For each neighbor 𝑜 , we es-

tablish mutual connections between 𝑣 and 𝑜 within their respective

segments (Lines 2–4). If the number of neighbors of 𝑜 in segment

𝑖 exceeds 𝑀 , we apply the Prune algorithm to discard the extra

neighbors (Lines 5–6). This algorithm guarantees the approximate

inclusivity of HSIG, as demonstrated in Section 5.4.

Fusing Skip List Connections for Pre-Filtering. For small-range

RF-ANNS queries, pre-filtering with an attribute index typically

outperforms PG-based methods. This is because PGs prioritize

vectors over attributes, making it difficult to filter candidates within

the query range. For instance, in the extreme case of a query range

containing only one object, using an attribute index to quickly

locate the target object is optimal. Thus, we propose fusing an

attribute index into the graph structure for effective pre-filtering.

As described in Section 2, the skip list is a popular index for efficient

1D key-value lookups and range searches, sharing a hierarchical

structure similar to HNSW and HSIG. Inspired by this, we integrate

the skip list into the backbone graph of HSIG to form a unified

index. Navigated by skip list connections, we can efficiently locate

and linearly search objects within the query range. As shown in

Figure 4, we use an extra connection G[𝑣] .𝑛𝑒𝑥𝑡 to store the ID of

𝑣 ’s successor object in the skip list. After inserting an object into

the backbone graph via Algorithm 4, we search for its successor in

the skip list and store it in G[𝑣] .𝑛𝑒𝑥𝑡 .
Global EdgeMasking for Post-Filtering. For large-range queries,
post-filtering with a pure ANNS index is preferable. We use a global

HNSW over the entire dataset to support post-filtering. Due to

inclusivity, the global HNSW is (approximately) a sub-graph of

HSIG. We apply a global edge pruning method to identify these

HNSW edges from HSIG edges and use a compact bitmap to mask

the unused edges. Since each segment’s sub-graph has a maximum

degree of𝑀 , we similarly limit the connections in the global graph

to a maximum of 𝑀 . This procedure is detailed in Algorithm 5.

First, we obtain the object 𝑣 ’s connections in all segments and

select𝑀 connections using the Prune algorithm (Line 1). Next, we

create a bitmap whose size equals the number of 𝑣 ’s neighbors in

Algorithm 5: GlobalEdgeMasking

Input :G: HSIG layer; 𝑣 : the object to insert;𝑀 : the

maximum degree.

Output : the updated graph.

1 N ← Prune(𝑣 , G[𝑣],𝑀);

2 G[𝑣] .𝑏𝑖𝑡𝑚𝑎𝑝 ← generate bitmap with N ;

3 foreach 𝑜 ∈ N do
4 if 𝑣 ∈ G[𝑜] then
5 𝑝𝑜𝑠 ← 𝑣 ’s position in G[𝑜];
6 G[𝑜] .𝑏𝑖𝑡𝑚𝑎𝑝 [𝑝𝑜𝑠] ← 1;

7 if 𝑠𝑢𝑚(G[𝑜] .𝑏𝑖𝑡𝑚𝑎𝑝) > 𝑀 then
8 N ′ ← Prune(𝑜 , G[𝑜],𝑀);

9 G[𝑜] .𝑏𝑖𝑡𝑚𝑎𝑝 ← update bitmap with N ′;

10 return G;

all segments and set the positions of 𝑣 ’s 𝑀 neighbors to 1 (Line

2). For each neighbor 𝑜 in the 𝑀 neighbors (Line 3), if 𝑣 is also a

neighbor of 𝑜 , set the position of 𝑣 in 𝑜’s bitmap to 1 (Lines 4–6).

Then, we update the bitmap of 𝑜 (Lines 7–9).

Complete Insertion Algorithm. As aforementioned, the adja-

cency list of a node in HSIG consists of (1) several chunks for

backbone graph connections, (2) a skip list connection, and (3) a

bitmap for global connections. The bottom-right of Figure 4 illus-

trates an example. Here,G[𝑣] [𝑖] is the backbone graph connections
of 𝑣 in the 𝑖-th segment, G[𝑣].next stores the ID of 𝑣 ’s successor in

the skip list, and G[𝑣].bitmap stores the global edge masks.

Next, we present the complete insertion algorithm to construct

an HSIG. The structure of HSIG can be seen as a set of HNSWs for

different segments, augmented with auxiliary structures for pre-

and post-filtering. The construction consists of three main steps:

building the HNSW in each segment, adding skip list connections,

and achieving global edge masking. Each step is performed hier-

archically and incrementally, as outlined in Algorithm 6. First, we

find the segment to which object 𝑣 belongs (Line 1). The maximum

layer 𝑙𝑒𝑣𝑒𝑙 of 𝑣 is determined randomly using an exponentially de-

caying probability distribution normalized by𝑚𝐿 (Line 2; see [23]

for more details). We traverse all segments (Line 3) to sequentially

establish the HNSW HG𝑗 in each segment 𝑗 . We determine the

maximum level 𝐿 and the entry point 𝑒𝑝 of HG𝑗 (Lines 4–5). For

each layer 𝑙 from 𝐿 to 𝑙𝑒𝑣𝑒𝑙 + 1, we use ANNSearch (Algorithm 1)

to find the nearest neighbor 𝑒𝑝 of 𝑣 in HG𝑙
𝑗
, where HG𝑙

𝑗
denotes

layer 𝑙 in HG𝑗 (Lines 6–7). For each layer 𝑙 from 𝑙𝑒𝑣𝑒𝑙 to 0, we em-

ploy BackboneConnectionsBuild (Algorithm 4) to insert 𝑣 into HG𝑙
𝑗

and use the nearest neighbor of 𝑣 as the entry point for the next

layer (Lines 8–10). After building HG𝑗 , we update its entry point

if necessary (Line 11) based on the rule that the first object in the

topmost layer becomes the entry point. Next, 𝑣 is inserted into the

skip list using the method described in [32] (Line 12). Finally, we

use GlobalEdgeMasking (Algorithm 5) to mask unnecessary edges

for post-filtering from layer 0 to 𝑙𝑒𝑣𝑒𝑙 (Lines 13–14).
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Algorithm 6: HSIGInsert
Input :HG: HSIG; 𝑣 : the object to insert; 𝑆 : number of

segments;𝑀 : the maximum degree; 𝑒 𝑓 𝐶𝑜𝑛𝑠:

number of candidate neighbors.

Output : the updated HSIG.

1 𝑖 ← ComputeSegmentId(𝑣 [𝐴]);
2 𝑙𝑒𝑣𝑒𝑙 ← ⌊− ln(unif (0 . . . 1) ·𝑚𝐿)⌋;
3 foreach 1 ≤ 𝑗 ≤ 𝑆 do
4 𝐿 ← the max level of HG𝑗 ;

5 𝑒𝑝 ← the entry point of HG𝑗 ;

6 foreach 𝐿 ≥ 𝑙 ≥ 𝑙𝑒𝑣𝑒𝑙 + 1 do
7 𝑒𝑝 ← ANNSearch(HG𝑙

𝑗
, 𝑣 , 𝑒𝑝 , 1);

8 foreach 𝑙𝑒𝑣𝑒𝑙 ≥ 𝑙 ≥ 0 do
9 𝑎𝑛𝑛 ← BackboneConnectionsBuild(HG𝑙

𝑗
, 𝑒𝑝 , 𝑣 , 𝑖 , 𝑗 ,

𝑀 , 𝑒 𝑓 𝐶𝑜𝑛𝑠);

10 𝑒𝑝 ← nearest object to 𝑣 in 𝑎𝑛𝑛;

11 update graph entry for HG𝑗 if necessary;

12 add skip list connections for 𝑣 in layers 0 . . . 𝑙𝑒𝑣𝑒𝑙 ;

13 foreach 0 ≤ 𝑙 ≤ 𝑙𝑒𝑣𝑒𝑙 do
14 HG𝑙 ← GlobalEdgeMasking(HG𝑙

, 𝑣 ,𝑀);

15 return HG;

4.2 Search on HSIG
To adapt to different query ranges, we propose three search strate-

gies and a range-aware search strategy selection method.

Strategy A (Pre-Filtering). Navigated by the hierarchical skip list

connections, we can quickly reach the bottom layer to identify the

first object whose attribute value falls within the query range. From

there, a linear search is performed to collect the query vector’s 𝑘NN

among those vectors with qualified attribute values. This method

is straightforward, so pseudocode is omitted.

Strategy B (Post-Filtering). We employ the hierarchical search

scheme outlined in Algorithm 2 to implement ANNS and then filter

out objects that fall within the query range. The ANNS is performed

over a global HNSW of the entire dataset, with edges marked by

bitmaps. During ANNS, we only consider outgoing edges marked

as 1 in the object’s bitmap. The search retrieves the top-𝑒 𝑓 nearest

neighbors (𝑒 𝑓 > 𝑘) in the bottom layer. We then perform attribute

filtering on these top-𝑒 𝑓 results to obtain the final top-𝑘 results.

Strategy C (Hybrid Filtering). We perform hybrid filtering by

reconstructing and searching the HNSW of the segments covering

the query range. The search follows the hierarchical scheme de-

scribed in Algorithm 2, starting from the topmost entry point of the

graphs in all segments. Since each object has 𝑀 connections per

segment, and assuming there are 𝑆 ′ segments intersecting the query

range, this requires visiting 𝑀𝑆 ′ neighboring nodes, leading to a

potentially large exploration space and high computational com-

plexity. Thus, we introduce the search parameter𝑚 to reconstruct

an HNSW with a maximum degree of𝑚 at runtime. We propose

two runtime neighbor selection strategies to select𝑚 neighbors

from 𝑀𝑆 ′ connections: (1) compute the distances between node

𝑣 and its neighbors in all 𝑆 ′ segments, and then select the top-𝑚

Algorithm 7: HybridFilteringLayer
Input :G: HSIG layer; 𝑞: query vector; [𝑙, ℎ]: query range;

𝑚: number of visited neighbors per object; 𝑒𝑝 :

entry point; 𝑘 : number of nearest neighbors.

Output :𝑞’s approximate 𝑘 nearest neighbors within [𝑙, ℎ].
1 push 𝑒𝑝 to the min-heap 𝑐𝑎𝑛𝑑 in the order of distance to 𝑞;

2 push 𝑒𝑝 to the max-heap 𝑎𝑛𝑛 in the order of distance to 𝑞;

3 S ← segments that intersect with [𝑙, ℎ];
4 while |𝑐𝑎𝑛𝑑 | > 0 do
5 𝑜 ← pop the nearest object to 𝑞 in 𝑐𝑎𝑛𝑑 ;

6 𝑢 ← the furthest object to 𝑞 in 𝑎𝑛𝑛 ;

7 if Γ(𝑜, 𝑞) > Γ(𝑢, 𝑞) then break ;

8 foreach 𝑖 ∈ S do
9 N ← the top-(⌈𝑚/|S|⌉) neighbors in G[𝑜] [𝑖];

10 foreach unvisited 𝑣 ∈ N do
11 mark 𝑣 as visited;

12 𝑢 ← the furthest object to 𝑞 in 𝑎𝑛𝑛;

13 if Γ(v,q) < Γ(u,q) or |𝑎𝑛𝑛 | < k then
14 push 𝑣 to 𝑐𝑎𝑛𝑑 ;

15 if 𝑙 ≤ 𝑣 [𝐴] ≤ ℎ then push 𝑣 to 𝑎𝑛𝑛;

16 if |𝑎𝑛𝑛 | > 𝑘 then pop 𝑎𝑛𝑛 ;

17 return 𝑎𝑛𝑛;

neighbors by sorting 𝑣 ’s neighbors based on distances; and (2) select

the top-(⌈𝑚/𝑆 ′⌉) neighbors from each chunk of the adjacency list

(since the neighbors of object 𝑣 in each chunk are naturally ordered

by their distances to 𝑣 upon acquisition via ANNSearch, we pick the
first ⌈𝑚/𝑆 ′⌉ objects from each chunk). We use the second strategy

as the default runtime neighbor selection method based on exper-

imental results in Section 5.6. Algorithm 7 lists the pseudocode

of hybrid filtering at a specific layer. Compared with Algorithm 1,

the major differences lie in: (1) examining only the outgoing edges

within the intersected segments (Line 8) and (2) pushing qualified

objects within the query range into the results (Line 15).

Range-aware Strategy Selection. Let 𝑌 be the cardinality of ob-

jects within a query range. Observing that pre-, post-, and hybrid

filtering outperform for small-, large-, and mid-range queries, re-

spectively, we propose the following heuristic for strategy selection:

use Strategy A if 𝑌 ≤ 𝜏𝐴 , Strategy B if 𝑌 ≥ 𝜏𝐵 , and Strategy C if

𝜏𝐴 < 𝑌 < 𝜏𝐵 . Here, 𝜏𝐴 and 𝜏𝐵 are thresholds that distinguish the

optimal ranges for each strategy and can be derived from statistical

analysis of historical data. Given these thresholds, we can estimate

the cardinality of an incoming query to apply the heuristic. Since

both statistic collection and cardinality estimation are well studied

[12, 27] and are not the focus of this paper, we provide a simple

preprocessing method to validate the effectiveness of our heuristic.

Specifically, we sample a set of objects from the base dataset to

use as queries and assign each a random query range. We then

run these queries using the three strategies and record their recall

and latency metrics. Given a recall target, we analyze records that

meet this requirement, identifying two turning points where pre-

and post-filtering outperform hybrid filtering. These two points

establish 𝜏𝐴 and 𝜏𝐵 , guiding strategy selection for future queries.

7



4.3 Theoretical Analysis
Space Complexity. Following the original work of HNSW [23],

we use a 32-bit integer to store an edge in HSIG and analyze space

complexity using 32-bit as a storage unit. In HSIG, each node has up

to𝑀𝑆 edges (taking𝑀𝑆 storage units), a bitmap of size𝑀𝑆 (taking

𝑀𝑆
32

units), and a skip list connection (taking one unit). For a dataset

of 𝑛 objects, the total number of nodes in HSIG is 𝑛𝐿′, where 𝐿′

represents the average number of levels in HSIG. This results in an

expected space complexity of 𝑂 (𝑛𝐿′ ( 33
32
𝑀𝑆 + 1)). As discussed in

[23], the average number of levels in HNSW is a constant, and since

HSIG uses the same strategy to determine the number of levels, 𝐿′

is also a constant in HSIG. The values of 𝑆 and𝑀 are determined

experimentally and are generally small constants. Given that 𝐿′, 𝑆 ,
and𝑀 are all considered small constants relative to the dataset size

𝑛, the space complexity can be simplified to 𝑂 (𝑛).
Construction Complexity. Consider a dataset with 𝑛 objects

divided into 𝑆 subsets, each containing 𝑛1, 𝑛2, . . . , 𝑛𝑆 objects. Insert-

ing an object into HSIG requires three operations: (OP1) backbone

graph insertion, (OP2) skip list insertion, and (OP3) edge masking.

OP3 can be completed in constant time, while OP2 has an expected

time complexity of 𝑂 (log𝑛) [32]. OP1 involves performing ANNS

on the HNSW in each segment, totaling 𝑆 iterations of ANNS. Since

ANNS on anHNSWwith 𝑥 objects takes𝑂 (log𝑥) time, the total cost

of OP1 is

∑𝑆
𝑖=1 log(𝑛𝑖 ), which is bounded by

∑𝑆
𝑖=1 log𝑛 = 𝑆 log𝑛.

Therefore, OP1 is an 𝑂 (𝑆 log𝑛) operation. Neglecting constants,

the expected insertion complexity of adding an object is 𝑂 (log𝑛),
and constructing an HSIG for 𝑛 objects scales as 𝑂 (𝑛 log𝑛).
Search Complexity. The complexity scaling of a single search

can be strictly analyzed under the assumption that HSIG is able

to exactly guarantee inclusivity with respect to HNSW. For an

HSIG with 𝑛 objects, consider a query range covering 𝑌 objects

and a small constant 𝑘 that is negligible compared to 𝑛. The search

complexities of the three strategies in HSIG are as follows:

A. Pre-Filtering. Searching the skip list has an expected complex-

ity of 𝑂 (log𝑛) [32], and computing vector distances within the

query range takes 𝑂 (𝑌 ) time. Thus, the total time complexity is

𝑂 (𝑌 + log𝑛). Due to the range-aware search in HSIG, Pre-Filtering

is only employed when 𝑌 is smaller than a constant 𝜏𝐴 , ensuring

that Pre-Filtering typically operates with an 𝑂 (log𝑛) complexity.

B. Post-Filtering. This strategy involves searching the global

HNSW, which has an expected time complexity of𝑂 (log𝑛) [23, 41].
C. Hybrid Filtering. For RF-ANNS, the hybrid-filtering strategy

identifies segments covering the query range and performs ANNS

on the HNSW of these segments. Assuming there are 𝑛′ objects
in the intersected segments, searching the HNSW takes 𝑂 (log𝑛′)
time. Since 𝑛′ ≤ 𝑛, the final expected time complexity is 𝑂 (log𝑛).
Although the theoretical complexity is derived under the exact in-

clusivity assumption, experimental results (Section 5.8) confirm the

method’s logarithmic scaling with increasing data size, validating

its efficiency and scalability for large datasets.

5 EXPERIMENT
5.1 Experimental Setup
Datasets.Weuse six real-world datasets of varying sizes and dimen-

sions in experiments. The Paper [40] and WIT-Image [52] datasets

contain both feature vectors and attribute values. The Paper in-

cludes publication, topic, and affiliation attributes, which we con-

vert from categorical to numerical, while WIT-Image uses image

size as its attribute. For the remaining datasets, which only contain

feature vectors, we generate numerical attributes for each object

using an attribute generation method similar to that described in

[39], augmenting each vector with a randomly generated attribute

value between 0 and 10,000. The characteristics of the datasets are

detailed in Table 1. For each query, we generate a query range

uniformly between 0.1% and 100%.

Compared Methods.We compare HSIG against six competitors

in terms of RF-ANNS performance:

• ADBV [43] is a hybrid analytic engine developed by Al-

ibaba. It enhances PQ [16] for hybrid ANNS and proposes

the accuracy-aware, cost-based optimization to generate

optimal execution plans.

• Milvus [39] partitions datasets based on commonly utilized

attributes and implements ADBV within each subset.

• NHQ [40] constructs a composite graph index based on

the fusion distance of vectors and attributes for hybrid

queries. It proposes enhanced edge selection and routing

mechanisms to boost query performance.

• NGT [46] is anANNS library developed by Yahoo Japan that

processes hybrid queries using the post-filtering strategy.

• Vearch [17, 20] is a high-dimensional vector retrieval sys-

tem developed by Jingdong that supports hybrid queries

through the post-filtering strategy.

• SeRF [52] designs a 2D segment graph that compresses

multiple ANNS indexes for half-bounded range queries and

extends this to support general range queries.

The code for most methods is publicly accessible online. For meth-

ods without available code, we implemented them based on their

descriptions in the respective papers. Since NHQ initially only

supported attribute matching, we modified its fusion distance com-

putation to account for the absolute differences between attribute

values and applied the post-filtering strategy for RF-ANNS. We use

the Euclidean distance function to measure vector distances.

Metrics.We evaluate query effectiveness by recall and efficiency

by measuring the number of queries processed per second (QPS).

Parameter Settings. There are three crucial parameters in HSIG:

𝑆 ,𝑀 , and 𝑒 𝑓 𝐶𝑜𝑛𝑠 , representing the number of segments, the maxi-

mum number of edge connections, and the number of candidate

neighbors during index construction, respectively. We use grid

search to find the optimal values, setting 𝑆 ,𝑀 , and 𝑒 𝑓 𝐶𝑜𝑛𝑠 to 8, 16,

and 500, respectively. The parameters𝑚 and 𝑒 𝑓 relate to the search

process, where𝑚 denotes the total number of neighbors visited per

object, and 𝑒 𝑓 represents the number of candidates searched during

a query. We vary the values of𝑚 and 𝑒 𝑓 to generate the recall/QPS

curves. We also use grid search to set parameters of baselines.

Implementation Settings. We implement the core parts of the

HSIG construction and search algorithms based on hnswlib [23].

The code is written in C++ and compiled with GCC 10.3.1 using the

"-O3" optimization flag. We provide a Python interface for the core

indexing library and conduct experiments using Python 3.8.17.

Environment. The scalability experiments are conducted on Al-

ibaba Cloud Linux 3.2104 LTS with 40 physical cores and 512GB
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Table 1: Dataset specifications

Dataset Dimension #Base #Query Type

SIFT1M 128 1,000,000 1,000 Image + Attributes

GIST1M 960 1,000,000 1,000 Image + Attributes

GloVe 100 1,183,514 1,000 Text + Attributes

Msong 420 992,272 200 Audio + Attributes

WIT-Image 2048 1,000,000 1,000 Image + Attributes

Paper 200 2,029,997 10,000 Text + Attributes

Table 2: Index build time and index size.

Method

Build Time (s) Index Size (MB)

SIFT1M GIST1M GloVe Msong WIT-Image Paper SIFT1M GIST1M GloVe Msong WIT-Image Paper

Vearch 735 1319 1187 2241 1294 617 692 3905 741 2095 4456 2430

NGT 789 27357 15281 771 8620 814 764 4031 773 1894 4277 2129

NHQ 2806 1689 4956 841 889 5039 78 66 52 99 97 158

ADBV 860 4318 896 2069 10039 2444 21 24 25 22 24 43
Milvus 1459 6931 1560 4289 4983 2477 30 52 35 36 56 61

SeRF 2502 11820 2678 4817 13440 6189 763 3896 704 1852 4185 2096

HSIG 2406 10827 2601 4230 16076 6254 1554 4728 1713 2647 5008 3785
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Figure 5: Overall Performance.

memory. The remaining experiments are conducted on a Linux

serverwith the following hardware specifications: an Intel(R) Xeon(R)

CPU E5-2609 v3 at 1.90GHz with 6 physical cores, 16GB memory,

and the Ubuntu 18.04.5 operating system.

5.2 Overall Performance
We evaluate the query performance of HSIG and its competitors

with 𝑘 values of 10 and 100. Based on the preprocessing method

in Section 4.2, we set the default values of 𝜏𝐴 and 𝜏𝐵 to 1% and

50% of the dataset size, respectively. Figure 5 displays the query

performance, and Table 2 shows the index sizes and build times.

Although HSIG does not excel in index size or build time due to

its multi-segment structure and extensive edge connections, it is

comparable to SeRF, the state-of-the-art PG-based solution for RF-

ANNS. PQ-based methods like ADBV and Milvus are space-efficient

but struggle to deliver competitive query accuracy and efficiency

compared to PG-based methods. As shown in Figure 5, HSIG con-

sistently outperforms the baselines across all datasets regarding

the QPS vs. recall trade-off. For example, with 𝑘 = 10 and a recall of

around 0.9, HSIG achieves a QPS two orders of magnitude higher

than ADBV on the GloVe and GIST1M datasets, one order of mag-

nitude higher than NHQ on the SIFT1M dataset, and outperforms

SeRF by up to 2.29 times across all datasets. These results high-

light HSIG’s effectiveness due to its unified graph structure and

range-aware strategy selection. Additionally, HSIG allows HNSW

reconstruction with varying edge degrees using the parameter𝑚,

whereas SeRF reconstructs HNSW with a fixed edge degree, limit-

ing its query performance. Finally, HSIG outperforms NGT, Vearch,

and NHQ, as they employ the post-filtering strategy and perform

poorly on small query ranges.

5.3 Effect of Range-aware Search Strategy
Selection

In this section, we evaluateHSIG’s performance across small, medium,

and large query ranges. The methods compared are as follows:

(1) HSIG-pre executes searches on HSIG using the pre-filtering

strategy. (2) PQ-pre performs attribute filtering first, followed by

PQ-based vector retrieval. (3) Btree-pre uses a B-tree for attribute
filtering, followed by brute-force vector retrieval. (4)HSIG-post ap-
plies HSIG with the post-filtering strategy. (5) HNSW-post builds
HNSW over the entire dataset and performs RF-ANNS using the

post-filtering strategy. (6) HSIG-hybrid employs HSIG for RF-

ANNS queries using the hybrid filtering strategy. (7) SeRF is a

state-of-the-art RF-ANNS solution that uses a hybrid filtering strat-

egy. (8)HSIG-range-aware conducts RF-ANNS using range-aware
search strategy selection. (9) Dedicated builds specialized indexes

for each strategy, with Btree-pre, HNSW-post, and SeRF used for

pre-, post-, and hybrid filtering, respectively, and selects the best

strategy based on the query range.

The results are shown in Figure 6. Some methods have missing

QPS values for specific query ranges, indicating they could not meet

the recall threshold. Notably, HSIG-pre, HSIG-hybrid, and HSIG-

post outperform their competitors in small, medium, and large

ranges, respectively. For example, HSIG-pre outperforms Btree-pre

by 20.3% at a recall of 0.9 in small query ranges. HSIG-hybrid ex-

ceeds SeRF by 1.21 times in medium query ranges at a recall of

0.95. HSIG-post outperforms HNSW-post by 37.5% at a recall of

0.99 in large query ranges. Additionally, HSIG-pre outperforms

HSIG-hybrid and HSIG-post in small ranges, HSIG-post surpasses

HSIG-hybrid and HSIG-pre in large ranges, and HSIG-hybrid per-

forms best among the three strategies in medium ranges, validating
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Figure 6: Impact of different query ranges on GloVe dataset.

the effectiveness of the proposed heuristics for range-aware strat-

egy selection. Finally, HSIG-range-aware consistently outperforms

Dedicated by up to 1.1 times across all query ranges, thanks to its

unified PG-based index and range-aware strategy selection.

5.4 Validation of Inclusivity of HSIG
In this section, we evaluate HSIG’s inclusivity using the inclusive-

ness metric. Inclusiveness is computed as
#common-edge

#hnsw-edge
× 100%,

where #common-edge is the number of identical edge connections

in both HSIG and the multi-segment HNSW (where multi-segment

HNSW refers to the HNSW constructed for any combination of

segments), and #hnsw-edge is the total number of edges in the

multi-segment HNSW. According to Definition 2, themulti-segment

HNSW should be a sub-graph of HSIG to satisfy inclusivity. Thus,

100% inclusiveness indicates that HSIG strictly satisfies inclusiv-

ity. In this experiment, we partition the dataset evenly into eight

segments and construct HNSWs for 1, 2, 4, 6, and 8 contiguous

segments. Figure 7 shows that the average inclusiveness of HSIG

exceeds 80%, demonstrating that HSIG achieves significant inclu-

siveness and approximately satisfies inclusivity.

To further evaluate the impact of inclusivity on query perfor-

mance, we compare HSIG at varying levels of inclusiveness (30%,

40%, 60%, and 80%) against two competitive methods that guaran-

tee exact inclusivity. The first method, Optimal HNSW, builds an

HNSW in real time for objects within each query range. The second

method, MS-HNSW, pre-builds HNSWs for each segment. During

the search,MS-HNSW identifies the segments intersecting with the

query range, retrieves vectors from the corresponding HNSWs, and

combines the intermediate results to obtain the final results. The

results are shown in Figure 8. While Optimal HNSW offers the best

performance, building indexes in real time for every query is time-

consuming and impractical. As HSIG’s inclusiveness increases, its

query performance improves, approaching that of Optimal HNSW.

Additionally, HSIG outperforms MS-HNSW, which requires more

distance computations. These results demonstrate the effectiveness
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Figure 7: Inclusiveness of HSIG.
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Figure 9: Performance of incremental insertion on SIFT1M.

of HSIG’s inclusivity, showing that higher inclusiveness leads to

better query performance.

5.5 Validation of Incremental Insertion
In this section, we evaluate HSIG’s incremental insertion capa-

bility. We first build HSIG with 200,000 objects from the SIFT1M

dataset, followed by four rounds of incremental insertion, each

adding 200,000 objects. We compare the index build time and query

performance against the state-of-the-art method SeRF. As shown in

Figure 9, HSIG’s build time remains stable with each insertion since

the number of inserted objects is consistent, whereas SeRF’s build

time increases linearly due to its lack of incremental update support.

Moreover, HSIG outperforms SeRF in query efficiency at a recall

of 0.95. These results highlight HSIG’s effectiveness in supporting

incremental insertions, showing it is suitable for applications with

continuously evolving data.

5.6 Validation of Runtime Neighbor Selection
In this section, we compare two strategies for runtime neighbor

selection in hybrid filtering, as described in Section 4.2. The first

strategy, Hybrid-S1, computes the distance to neighbors in all 𝑆 ′

segments (assuming there are 𝑆 ′ segments intersecting with the

query range) and then selects the top-𝑚 neighbors by sorting them

based on their distances. The second strategy, Hybrid-S2, selects

the top-(⌈𝑚/𝑆 ′⌉) neighbors from each segment. As shown in Fig-

ure 10, Hybrid-S2 outperforms Hybrid-S1 in query efficiency. This

is because Hybrid-S2 selects the top-(⌈𝑚/𝑆 ′⌉) neighbors from the

pre-ordered neighbor lists without additional distance calculations,

as neighbors of the object 𝑣 in each segment are already sorted

by their distance to 𝑣 upon acquisition via ANNSearch. In contrast,
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Figure 12: Index build time on different index parameters.

Hybrid-S1 requires calculating distances for all neighbors across 𝑆 ′

segments, increasing query time. Therefore, we adopt Hybrid-S2 as

the default runtime neighbor selection method.

5.7 Parameter Study
In this section, we analyze the sensitivity of key parameters in-

volved in both index construction and search performance.

Impact of Index Construction Parameters. We analyze the

sensitivity of three parameters in HSIG construction: 𝑆 , 𝑀 , and

𝑒 𝑓 𝐶𝑜𝑛𝑠 . Figures 11 and 12 illustrate how these parameters affect

query performance and index build times, respectively. Figure 11a

shows the impact of varying 𝑆 on query performance. We observe

a gradual performance improvement as 𝑆 increases from 2 to 8.

However, further increasing 𝑆 results in a decline in performance

because more segments require visiting more neighbors per object

during the search. Figure 11b and Figure 11c illustrate the effects

of varying 𝑀 and 𝑒 𝑓 𝐶𝑜𝑛𝑠 on query performance, respectively. A

lower𝑀 degrades the quality of the graph structure, while a higher

𝑀 increases the number of objects traversed during the search. Sim-

ilarly, a lower 𝑒 𝑓 𝐶𝑜𝑛𝑠 results in insufficient candidate neighbors,

whereas a higher 𝑒 𝑓 𝐶𝑜𝑛𝑠 includes more irrelevant candidates, both

hindering query performance. Therefore, setting these parameters

based on the dataset and workload is crucial for balancing query

efficiency and accuracy. As shown in Figure 12, index build time

increases with higher values of 𝑆 , 𝑀 , and 𝑒 𝑓 𝐶𝑜𝑛𝑠 due to the in-

creased distance computations required during construction. Based

on a comprehensive evaluation of query performance and index

construction time, we select 𝑆 = 8, 𝑀 = 16, and 𝑒 𝑓 𝐶𝑜𝑛𝑠 = 500 as

the default parameter settings.
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Figure 13: Performance on different search parameters.

Impact of Search Parameters. Figure 13 shows the impact of

varying the parameters 𝑒 𝑓 and𝑚 on hybrid filtering in HSIG. Here,

𝑒 𝑓 is typically set to a value greater than 𝑘 . Figure 13a and Fig-

ure 13c show that with𝑚 = 16, as 𝑒 𝑓 increases, recall gradually

improves while QPS decreases. This occurs because a larger 𝑒 𝑓

requires visiting more objects to gather sufficient candidates, en-

hancing accuracy but reducing efficiency. Figure 13b and Figure 13d

show that with 𝑒 𝑓 = 100, increasing𝑚 leads to a gradual improve-

ment in recall but a decrease in query efficiency. This is because a

larger𝑚 results in visiting more neighbors of each object during

the search, improving accuracy but at the cost of efficiency.

Impact of 𝑘 values. Figure 14 shows the impact of different 𝑘 val-

ues on the hybrid filtering performance of HSIG. HSIG maintains

strong query efficiency and accuracy across various 𝑘 values. How-

ever, as 𝑘 increases from 10 to 100, performance gradually declines

due to the increased number of candidates that need to be filtered

during the search.

5.8 Scalability
We evaluate the scalability of HSIG using datasets ranging from 10

to 100 million objects. We fix the index parameters to 𝑆 = 8,𝑀 = 16,

and 𝑒 𝑓 𝐶𝑜𝑛𝑠 = 500, and maintain a query range width of 25%. As

shown in Figure 15, both the index size and build time increase

almost linearly with the dataset size. Figure 15c plots the hybrid

filtering latency versus data size, indicating a logarithmic search

complexity. Notably, the recall consistently reaches 0.99 across all

dataset sizes. These results demonstrate that HSIG achieves strong

scalability in both index construction and query processing.

5.9 Discussions
Range-aware strategy selection.Asmentioned in Section 4.2, our

range-aware strategy selection method is based on historical data

statistics, not query patterns. This approach may face challenges

if the data distribution of the base dataset changes significantly

over time. To address this, we propose an adaptive method that

can detect changes in data distribution. If the change exceeds the

user-defined threshold, it resamples objects from the updated base

dataset to recalibrate 𝜏𝐴 and 𝜏𝐵 , thereby adjusting the range-aware

search strategy selection.

RF-ANNS with Multiple Attributes. Existing PG-based indexes

struggle to support RF-ANNS queries with multiple attributes, as
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Figure 15: Impact of varying data size on SIFT dataset.

incorporating multiple attributes into a graph is challenging. How-

ever, with two enhancements, HSIG can be extended to handle such

queries. While we focus on the case with two attributes in this

discussion, the approach can be easily adapted for more attributes.

(1) Multiple single-attribute indexes: Build a separate HSIG for each

attribute. For a conjunctive query with a query vector 𝑞, retrieve

objects that satisfy 𝑟1 (𝐴1) AND 𝑟2 (𝐴2), where 𝑟1 (𝐴1) and 𝑟2 (𝐴2)
are the attribute ranges. The goal is to return the top-𝑘 ANN of 𝑞

among objects satisfying both ranges. Specifically, we modify Line

15 of Algorithm 7 to "if 𝑣 satisfies 𝑟1 (𝐴1) AND 𝑟2 (𝐴2), then push

𝑣 to 𝑎𝑛𝑛". For disjunctive queries (𝑟1 (𝐴1) OR 𝑟2 (𝐴2)), we use sepa-
rate indexes for 𝐴1 and 𝐴2 and merge the results. (2) Single index

for multiple attributes: Create a composite attribute (𝐴1, 𝐴2) and
apply the z-order method [28] to map them into a one-dimensional

attribute, enabling the construction of a single HSIG to handle

RF-ANNS queries with multiple attributes. We plan to explore a

dedicated algorithm for RF-ANNS queries with multiple attributes

in future work.

6 RELATEDWORK
6.1 ANNS
The primary approaches for A𝑘NNS can be categorized tree-based

methods [2, 26], hash-based methods [13, 37, 50], quantization-

based methods [1, 9, 22, 24], and proximity graph-based (PG-based)

methods [6, 7, 23, 34, 35, 41, 49]. Tree-structured indexes like the

KD-tree [4], R-tree [11], VP-tree [8], and KMeans-tree [48] suffer

from the "curse of dimensionality" [14], making them ineffective in

high-dimensional spaces. Hash-based methods utilize hash func-

tions to map vectors into hash buckets. However, as the binary hash

code length increases, the number of buckets grows exponentially,

leading to many empty buckets, which reduces the search accuracy.

Quantization-based methods reduce storage and computational

costs but involve lossy compression, which produces a "ceiling"

phenomenon on the search accuracy [21]. PG-based methods show

significant performance advantages and have attracted substan-

tial attention. However, while effective for vector retrieval, these

methods fail to handle attribute filtering effectively, limiting their

applicability in scenarios requiring integrated vector retrieval and

attribute filtering.

6.2 Filtered ANNS
Most current research on hybrid A𝑘NNS queries separates the

process into two sub-modules: vector retrieval and attribute filter-

ing, which are then combined to produce the final query results.

MA-NSW [45] explores ANNS with attribute constraints by con-

structing indexes for each attribute combination. Vearch [20] and

NGT [46] apply the post-filtering strategy, which first retrieves the

candidates through vector similarity search, then filters candidates

based on the attribute values. Additionally, the post-filtering strat-

egy is extendable to some existing vector libraries such as Faiss

[18], and SPTAG [5]. However, these methods perform worse when

the selectivity of the query range is low, limiting the efficiency

and accuracy of the hybrid query. ADBV [43] employs a B-tree

and a PQ index to manage attributes and vectors, respectively, and

determines optimal query plans based on a cost model. Milvus

[39] partitions datasets by attribute values and adopts the query

strategies of ADBV. However, these approaches focus on query

optimization and partitioning techniques without enhancing the

index structure. Filtered-DiskANN [10] develops a graph index that

supports both attribute matching and vector similarity searches.

However, this method primarily addresses attribute matching, leav-

ing a research gap for A𝑘NN with range constraints. NHQ [40] and

HQANN [44] introduce a fused distance metric that combines at-

tributes with vectors, enabling simultaneous attribute filtering and

vector retrieval within a single graph index. However, these fusion

distance methods lack a solid theoretical basis since the attributes

and vectors are irrelevant. ARKGraph [51] constructs proximity

graphs for all possible attribute range combinations and compresses

the indexes. However, this approach requires decompression during

querying, reducing query efficiency. SeRF [52] proposes solutions

for range-filtering A𝑘NNS by designing a segment graph that com-

presses multiple A𝑘NNS indexes for half-bounded range queries

and extends this index structure to support general range queries.

Nonetheless, SeRF does not support the online updates of new data.

7 CONCLUSION
This paper addresses RF-ANNS queries over high-dimensional vec-

tors associated with attribute values. Existing methods, including

pre-, post-, and hybrid filtering strategies, which apply attribute

filtering before, after, or during the ANNS process, suffer perfor-

mance degradation when query ranges shift. We propose a novel

framework called UNIFY, which constructs a unified PG-based in-

dex that seamlessly supports all three strategies. Within UNIFY, we

introduce SIG, enabling efficient RF-ANNS by reconstructing and

searching a PG from relevant segments. Additionally, we present

HSIG, a variant of SIG that incorporates a hierarchical structure

inspired by HNSW, achieving logarithmic time complexity for RF-

ANNS. Experimental results demonstrate that UNIFY outperforms

state-of-the-art methods across varying query ranges.
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