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Abstract

Multi-modal trajectory representation learning aims to convert raw trajectories into low-
dimensional embeddings to facilitate downstream trajectory analysis tasks. However, existing
methods focus on spatio-temporal trajectories and often neglect additional modal features
such as textual or imagery data. Moreover, these methods do not fully consider the correlations
among different modal features and the relationships among trajectories, thus hindering the
generation of generic and semantically enriched representations. To address these limitations,
we propose a generic Contrastive Learning-based Multi-modal Trajectory Representation
framework, termed CLMTR. Specifically, we incorporate intra- and inter-trajectory con-
trastive learning components to capture the correlations among diverse modal features and
the intricate relationships among trajectories, obtaining generic and semantically enriched
trajectory representations. We develop multi-modal feature embedding and attention-based
fusion approaches to capture the multi-modal characteristics and adaptively obtain the uni-
fied embeddings. Experimental results on two real-world datasets demonstrate the superior
performance of CLMTR over state-of-the-art methods in three downstream tasks.

Keywords Multi-modal trajectory - Trajectory representation methods - Deep learning -
Contrastive learning

1 Introduction

With the proliferation of GPS-equipped devices and location-based services, enormous
trajectories are generated at an unprecedented rate. Such trajectories, capturing rich infor-
mation about moving objects, play an essential role in various trajectory analysis tasks
such as trajectory similarity search, clustering, and prediction [1-5]. Traditional trajectory
analysis research requires hand-crafted feature engineering for specific tasks, making it time-
consuming and costly. Thus, trajectory representation learning [6—10] has emerged to address
this limitation. It automatically captures the characteristics of trajectories and converts raw
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trajectories into low-dimensional embeddings that can efficiently promote trajectory analysis
tasks.

Earlier trajectory representation learning methods leverage seq2seq models to generate
representations through reconstruction tasks [7, 10, 11]. However, these methods treat tra-
jectories as ordinary sequence data and fail to fully consider the spatio-temporal information
of trajectories. Subsequently, researchers proposed many methods for specific tasks, such as
approximate similarity computation [8, 9, 12] and trajectory clustering [13, 14]. However,
these methods constrain their applicability to a wide range of downstream tasks. Moreover,
with the development of social media, trajectory data containing other modalities, such as
text, images, and videos, has emerged. In this paper, we introduce the term multi-modal
trajectory to represent trajectories that include multiple features such as spatial, temporal,
textual, and visual features. Specifically, we focus on multi-modal trajectories incorporating
spatial, temporal, and textual modalities due to their wide range of applications. However,
existing studies concentrate on spatio-temporal features but ignore additional modal features,
potentially leading to poor performance in some scenarios.

Example 1 In the case of trip recommendation, when a tourist plans a trip to a city and
queries a route associated with the desired activities, searching for similar travel trajectories
will help her make suitable trip plans. In this case, we need to consider spatial, temporal,
and textual modalities simultaneously. As shown in Fig. 1, T; is a query trajectory, with
each location tagged with a specific activity, and 77 and 73 are historical travel trajectories.
If only spatio-temporal similarity is considered, 7> would be recommended. However, T3
shares remarkably similar activities with 77, represented by the sequence {Museum, Mall,
Restaurant}, and also exhibits spatio-temporal similarity. Thus, 73 is the more suitable trip
route to recommend.

Multi-modal features are extensively used in various trajectory analysis and management
tasks, including spatial keyword similarity searches on trajectories [15—17], multiple-feature
trajectory clustering [18, 19], travel time estimation based on spatio-temporal and POI infor-
mation [20, 21], and traffic management through cross-retrieval between traffic images and
coordinates [22], as detailed in Section 2.3. However, existing trajectory representation stud-
ies have not fully utilized these multi-modal features. To bridge this gap, we investigate
the multi-modal trajectory representation problem to obtain more expressive, semantically
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Fig.1 An example of multi-modal trajectories with spatial, temporal, and textual features
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enriched, and generic representations. However, two non-trivial challenges remain to be
addressed.

Challenge 1: How to effectively capture and fuse the multi-modal characteristics in
trajectories? Existing works [7, 11, 23] employ Word2Vec methods to capture spatial and
temporal features but overlook spatial proximity and temporal periodicity. At2vec [11] and
At2vec-attn [23] utilize GloVe to capture textual features, yet they may not fully capture
the complex contextual relationships within trajectories. Consequently, there is a noticeable
absence of methods comprehensively capturing multi-modal characteristics, including spa-
tial proximity, temporal periodicity, and complex textual relationships. Traditional fusion
techniques for multi-modal features, which often rely on simple concatenation or weighted
combinations, do not adequately consider the correlation and significance of each modal-
ity, limiting the potential for generating semantically enriched trajectory representations.
Therefore, developing a fusion method that considers the correlations and importance of
multi-modal features presents a considerable challenge.

Challenge 2: How to obtain the semantically enriched and generic representations
that can be applied to various downstream tasks? The majority of existing studies on
trajectory representation have focused on task-specific applications, such as trajectory simi-
larity approximation [8, 9, 24] and trajectory clustering [13, 14]. However, these task-specific
approaches tend to generate representations tailored to particular tasks, making it challeng-
ing to transfer these representations to other tasks. This limitation narrows their usefulness
across a wide array of downstream tasks. Consequently, developing methods to learn intrinsic
trajectory features and generate generic trajectory representations applicable to a wide range
of downstream tasks remains a significant challenge.

To solve these challenges, we propose a novel and generic Contrastive Learning-based
Multi-modal Trajectory Representation framework, namely CLMTR. To address Challenge
1, we capture multi-modal characteristics comprehensively by applying a graph embedding
method for spatial embeddings to consider spatial proximity, developing a temporal embed-
ding method that considers periodic patterns, and utilizing the pre-trained BERT model for
textual embeddings to learn contextual relationships in trajectories. We propose an attention-
based fusion method to fuse multi-modal characteristics, adaptively learning different modal
weights to derive unified multi-modal embeddings. Furthermore, observing that different
modal features within the same trajectory are highly correlated, while those from distinct
trajectories exhibit less correlation, we apply a contrastive learning method to compare a
trajectory against itself across different modalities. This approach captures the correlations
and complementarities among different modal features within the same trajectory, generating
fused semantically enriched trajectory representations.

To address Challenge 2, we apply the multi-task learning strategy that jointly trains the
intra- and inter-trajectory contrastive learning components. The contrastive learning method
can capture the structure and features of trajectories, resulting in more general and dis-
criminative representations. Specifically, the intra-trajectory contrastive learning component
focuses on the correlation among different modal features within the same trajectories, while
the inter-trajectory contrastive learning component focuses on capturing the relationship
among different trajectories. We also propose practical approaches for constructing con-
trastive views. Through the joint training of intra- and inter-trajectory contrastive learning
components, CLMTR can produce expressive and generic representations that are effective
across various downstream tasks such as trajectory similarity search, clustering, and travel
time estimation.
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In summary, our main contributions are as follows.

e We propose multi-modal embedding methods to comprehensively capture multi-modal
features, including spatial proximity, temporal periodicity, and complex textual rela-
tionships. Furthermore, we propose an attention-based feature fusion method and
intra-trajectory contrastive learning method to fuse these multi-modal features adap-
tively.

e We propose a novel, generic framework CLMTR for multi-modal trajectory repre-
sentation, which is the first contrastive learning-based solution to the best of our
knowledge. CLMTR incorporates intra- and inter-trajectory contrastive learning com-
ponents, effectively capturing the correlations among multi-modal features within the
same trajectories and the relationships among different trajectories, thereby generating
semantically enriched and generic representations applicable to a wide range of down-
stream tasks.

e We conduct extensive experiments on two real-world trajectory datasets. The experimen-
tal results demonstrate the superiority of CLMTR over the six state-of-the-art methods
across three downstream tasks.

The remainder of the paper is organized as follows. Section 2 discusses the related work.
Preliminaries and the problem statement are given in Section 3. Section 4 presents the details
of CLMTR. The experimental results are given in Section 5. Finally, Section 6 concludes
this paper.

2 Related work
2.1 Trajectory representation learning

Trajectory representation learning aims to transform trajectories into generic low-dimensional
vectors suitable for various downstream applications. T2vec [7] utilizes a seq2seq model to
reconstruct trajectories from the low-quality ones. Traj2vec [10] extracts pre-defined fea-
ture sequences from raw trajectories and trains a seq2seq model using reconstruction loss.
ADVTRAJ2VEC [6] enhances the robustness of t2vec by perturbing the embedding layer
parameters. However, these approaches treat trajectories as ordinary sequence data, fail-
ing to exploit their spatio-temporal semantic characteristics thoroughly. They also focus on
individual trajectory characteristics, neglecting inter-trajectory relationships and failing to
capture comprehensive and generic trajectory features. Subsequently, many methods have
been proposed for specific tasks, such as approximate similarity computation and trajec-
tory clustering. NEUTRAJ [8] utilizes an LSTM with a spatial attention memory module to
approximate trajectory similarities. Traj2SimVec [24] reduces the training cost of NEUTRAJ
through an index-based sampling strategy and introduces an auxiliary loss for capturing the
matching relationships between trajectories. TMN [25] utilizes a matching mechanism to
compute attention weights for point pairs across trajectories to improve accuracy. T3S [12]
applies the RNN-based model and self-attention to learn trajectory similarities by cap-
turing various unique characteristics of trajectories. GTS [26] learns features from both
POIs and trajectories for similarity computation. GTS™ [27] learns spatio-temporal char-
acteristics and spatial network structure to obtain trajectory representations. TrajGAT [9]
introduces a graph-based attention model to capture long-term dependencies within trajecto-
ries. Trembr [28] exploits the underlying road networks to learn spatio-temporal properties
in trajectories. ST2Vec [29] considers fine-grained spatio-temporal relations between tra-
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jectories. DETECT [14] and E2DTC [13] focus on trajectory clustering by training with
reconstruction and cluster-oriented losses. However, these methods are task-specific, limit-
ing their general applicability to various downstream tasks. They focus on spatio-temporal
features, neglecting other modal features. Recently, several methods considering multi-modal
features have emerged. At2vec [11] and At2vec-attn [23] learn activity trajectory representa-
tions by considering spatio-temporal characteristics and activity semantics jointly. However,
they do not capture the correlation of different modal features within the same trajectory
and the intricate relationships between different trajectories, thus hindering the generation
of semantically enriched trajectory representations.

2.2 Contrastive learning in trajectory

Contrastive learning has recently achieved remarkable success in computer vision [30,31] and
natural language processing [32—34]. This method constructs positive and negative samples,
maximizing the similarity between positive pairs while minimizing it between negative pairs.
Itis frequently employed in extracting features from images and videos. For instance, training
the network to identify image orientation and remain invariant to data augmentation can yield
high-quality image representations [31]. These representations can subsequently be leveraged
for downstream tasks. Recently, a few works based on contrastive learning have emerged in
trajectory analysis tasks. CTLTR [35] employs contrastive learning to capture the intrinsic
POI dependencies and traveling intent, thereby learning robust representations applicable
to tour planning. CL-TSim [36] and CSTRM [37] employ contrastive learning to derive
latent trajectory representations. TrajCL [38] introduces a dual-feature, self-attention-based
contrastive learning model to extract spatial and structural features from trajectories jointly.
START [39] learns trajectory representations by exploiting temporal regularities and travel
semantics, introducing trajectory contrastive learning as a self-supervised task. However,
these studies do not capture the correlation and complementarity of different modal features
within the same trajectory, failing to generate semantically enriched and generic trajectory
representations.

2.3 Multi-modal trajectory-based tasks

With the development of location-based services, multi-modal trajectories that include spa-
tial, temporal, textual, and visual features are being rapidly generated. These features are
utilized in various trajectory applications. For instance, [15-17] investigate spatial keyword
similarity searches on multi-modal trajectories to find trajectories that are not only close
geographically but also meet the query’s semantic requirements. Zheng et al. [15] address
approximate keyword queries by proposing a hybrid index and spatio-textual utility function.
Zheng et al. [16] introduce a top-k spatial keyword query, offering a novel similarity function,
hybrid indexing structure, and efficient search algorithm. Song et al. [17] present collective
spatial keyword queries, integrating spatial, textual, and popularity information with a novel
hybrid index. For similarity search and clustering of multi-modal trajectories, [ 18] proposes a
weighted similarity measurement considering all modalities, and [19] introduces a trajectory
similarity measurement that considers the semantic relationships between modalities. The
travel time estimation task aims to predict the travel time of a route by capturing its inher-
ent features. Li et al. [20], Han et al. [21] combine POI, spatial, and temporal features for
more accurate estimation. For traffic management tasks such as traffic accident analysis, [22]
presents a cross-modal retrieval method between trajectory images and coordinates. However,
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these studies are task-specific and do not fully explore the correlations and complementarities
among different features, nor the complex relationships between trajectories.

3 Preliminaries

In this section, we introduce preliminary concepts and formally define the problem of multi-
modal trajectory representation learning.

Definition 1 (Multi-modal trajectory) A multi-modal trajectory T is a sequence of time-
ordered points containing multi-modal features, e.g., spatial, temporal, textual, imagery, or
video features. In this paper, we focus on the spatial, temporal, and textual features of trajec-
tories, and our framework can also be applied to other modal features. T = {p1, p2, ..., p|1|}»
where each point p; = (p;.[, p;.t, pi.®P) consists of p;.l and p; .t, representing the location
and the timestamp, respectively. Additionally, p;.® = {w;} is a set of keywords representing
the textual description associated with the points. In the following, we interchange the terms
“trajectory” and “multi-modal trajectory” when no ambiguity arises.

Definition 2 (Trajectory encoder)To better handle long dependencies and capture rela-
tionships between different points in the trajectory, we use the multi-head self-attention
Transformer [40] as the trajectory encoder.

The input to the encoder is fused embeddings of trajectories, denoted as X € RI71*? we
add positional information into the input using position encoding. For the j-th dimension of
the fused embedding of the i-th point on a trajectory, represented by X; ;, we update it by
adding the corresponding position encoding value e; ; as follows:

Xi,j =X,“j +eij (D
sin(i/10000%//4), 0 < j < d and j is even o
P .
' cos(i/10000%/4), 0 < j < dandjisodd
where d is the embedding dimension.

In the multi-head self-attention Transformer, the H, attention heads transform X into the
H; query matrix Q = XWhQ the key matrix K, = XW,{( , and the value matrix V;, = XW,‘{

where WhQ R W,’f R WX € R9*d" are learnable parameters, and d’ = d /H,. The h-th attention
head is computed as (3), and the number of attention heads is set to 4 in the experiment.

Jd

The outputs from attention heads are concatenated and then passed through a projection
matrix WO e R?*4, resulting in the outputs X' € RI71*? as follows:

T
An(Qn. K, Vi) = softmax (QhKh ) v, 3)

X' = MultiAtt(Q, K, V) = (A]] - - - ||Ag,) WO )

Then we incorporate layer normalization and residual connection to enhance the model’s
performance. Ultimately, we utilize a feed-forward network (FFN) comprising two linear
layers and a ReLU activation function to obtain the output representation v of trajectory T
as follows:

v = (ReLUX'W} + b)) W% + b% )
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where WlF, W2F e RIxd, blF, bZF € RY are learnable parameters. The layer normalization
and residual connection are also applied here.

Problem 1 Given a multi-modal trajectory dataset D = {7; }l_l, our objective is to propose a
self-supervised framework for training a trajectory encoder E : T; — v; that maps trajectory
T; to a generic d-dimensional representation vector v; € RY, effectively capturing the spatial-
temporal characteristics and textual information of the trajectory. The representations can be
applied to various downstream tasks, such as trajectory similarity search, trajectory clustering,
and travel time estimation.

4 Methodology

In this section, we introduce the CLMTR framework as illustrated in Fig. 2. We begin by
explaining the multi-modal features embedding component, followed by detailing the intra-
and inter-trajectory contrastive learning components.

4.1 Multi-modal features embedding

Location embedding Spatial location plays a crucial role in capturing the shape of a tra-
jectory and the connectivity among its points. Traditional methods divide space into a grid,
assigning points to corresponding grid cells and transforming trajectories into sequences of
grid cell IDs. Spatial embeddings are derived using the Word2Vec method. However, these
methods neglect the connectivity and spatial proximity among points. To address this limita-
tion, we adopt the Node2Vec technique. Instead of considering all grid cells, we focus only
on those called prominent cells, to which a higher number of trajectory points are assigned,
mitigating the issue of sparse information. We construct a graph in which each vertex cor-
responds to a prominent grid cell, and edges connect each vertex to its k nearest neighbors.

Location Embeddi Time E ing Text Embedding Attention-based Fusion
1. Multi- y text embeddings [ Location | i mn
Modal MLP ;emheddlngs' —e—
Features Time attention
Embedding x ][vhvl, Vil | embeddings | ot amm—Q—ve
Pre-trained Bert ./ \Module
; Text
text information embeddings | HEECEE
‘ 2. Intra-trajectory Contrastive Learning
Spatio- st
temporal fusion, Spatio-temporal embeddings W\—' mLpm b
R, Textual \ L
[Trajectury 1 Vs, o /' intra
Spatio-temporal Textual embeddings —ZEncodcrE T’ MLP M’ hv

Joint
l 3. Inter-trajectory Contrastive Learning ‘ Training

— emb
View1 T » Embedding — Fusion Layer Encode E 4" Projection Model P \ J
lntET

Augment Welghl sharing v
ation emb’ : — -
7 \Embeddlng }——’ Fusion Layer —/Encoder E’ Proj Model P' I Q.

~
Nearest-

neighbor
pairs

View2 T’
Fig.2 The framework of CLMTR consists of three main components: the top part is the multi-modal features

embedding component, the middle part is the intra-trajectory contrastive learning component, and the bottom
part is the inter-trajectory contrastive learning component
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Using the Node2 Vec algorithm, we approximate the spatial conditional probability of vertices
within their respective neighborhoods. As a result, locations sharing similar neighborhoods
exhibit similar embeddings. These vertex embeddings serve as spatial embeddings, allowing
the location embedding of a trajectory to be represented as Ty = (l1,1p,--- ,[,), where [;
corresponds to the location embedding of the trajectory point p;.

Time embedding One straightforward approach is to divide the time axis into discrete slots,
assigning trajectory points to these slots based on their timestamps. The Word2Vec method
can then be used to generate temporal embeddings by utilizing slot IDs to represent temporal
trajectory points. However, this method does not effectively capture the periodic patterns of
time. Temporal features exhibit strong periodicity, manifesting in seconds, minutes, hours,
days, etc. Therefore, the time embedding must be scale-independent and capable of cap-
turing the periodic nature of time. We employ a sine function to model temporal features
more accurately. By learning parameters from time inputs, the model captures the periodic
characteristics of time. This enhances the understanding and utilization of temporal infor-
mation, making it less affected by uneven sampling rates. Specifically, let #; ; represent the
Jj-th dimensional value of the time embedding for the i-th point on a trajectory.

= @t + ), ifj=0 (6)
i sin(w;t +¢;), ifl<j<dm—1

Here, ; and ¢; are learnable parameters, d;;,, denotes the embedding dimension, sin(-, -)
is a periodic activation function that captures periodic behaviors, and the linear term within
the equation captures non-periodic patterns. Therefore, the time embedding of a trajectory can
be denoted as T; = (1, t2, - - - , t,,), Where t; represents the time embedding of the trajectory
point p;.

Text embedding The textual information associated with trajectory points, indicating user
activities, check-in tips, or POI information, provides enriched semantic information for
trajectories. We use the pre-trained BERT model for text feature extraction to capture the
complex contextual relationship within the trajectory, generating embeddings for text asso-
ciated with each trajectory point. The tokenizer in BERT utilizes the WordPiece technique,
which is a subword-based approach for breaking down each word into a sequence of subword
units. The pre-trained BERT model used in our experiment is bert-base-uncased. The text
embeddings derived from BERT have a size of 768 dimensions. Subsequently, a linear model
is used to reduce the dimensionality of these text embeddings from 768 to 256. Eventually, the
text embedding of a trajectory is denoted as T, = (wy, wa, - -+ , wy), where w; corresponds
to the text embedding of the trajectory point p;.

Attention-based fusion Following the multi-modal feature embedding process, we acquire
the location embedding 7y = (I, 2, - - - , I,;), time embedding 7; = (t1, t2, - - - , 1), and text
embedding Ty, = (wy, wa, - - - , wy) of atrajectory, respectively. Given that these representa-
tions capture distinct aspects of trajectories, we enhance their expressive power by facilitating
their interaction. Thus, we employ an attention mechanism to calculate the attention scores
associated with the representation embedding and subsequently perform a weighted fusion,
effectively leveraging the importance of different modalities. Firstly, we transform spatial,
temporal, and textual embeddings via a matrix W,.

11 =W, Iy, =W, 153=W,T, @)
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Then the interaction of these multi-modal features is computed as follows:

exp (WQri ~WKro)

Bi.j =
" Z, ’e(1,2,3) ©XP (Woti - Wiy )
= Norm (FEN (81,171 + Bi12m2 + Bi1.313) + Ty) . 3)
= Norm (FFN (B2,171 + B222 + B2313) + Ti)
Vi = Norm (FEN (83,171 + B32m2 + B3373) + Tw) ,
Vg = Concat(Vy, Vi, Vi) )

where W and W are matrices of the same shape as Wy, Vi, V;, and V,, are the enhanced
embeddings of Ty, T;, and Ty, respectively. The fused multi-modal embedding is obtained
through (9).

4.2 Intra-trajectory contrastive learning component

We observe a strong correlation among various modal features within the same trajectory,
contrasted with the reduced correlation between modalities from different trajectories. To
enhance the collaboration between different modalities and capture the inherent character-
istics of trajectories, we introduce an intra-trajectory contrastive learning component that
compares a trajectory with itself across a range of modalities. Through this component,
learning in one modality can influence learning in others, ensuring that only high-quality
representations across different modalities are aligned. It is not trivial to construct suitable
contrastive views for multi-modal features. We present the solution based on the following
two observations. First, we note that single-modal features can complement each other. For
instance, knowing a location allows us to infer the activities taking place there. Moreover,
the more modal features we have, the more accurate our inferences become. Specifically,
specifying both the location and the corresponding timestamp enables more precise predic-
tions about the activities occurring at that time and place. Consequently, we propose two
strategies for creating contrastive views: contrasting single modal features and contrasting a
single feature with multiple fused features. We can create six contrastive views in total: spatial
vs. temporal feature, spatial vs. textual feature, temporal vs. textual feature, spatial feature
vs. temporal-textual fused features, temporal feature vs. spatial-textual fused features, and
textual feature vs. spatio-temporal fused features. Preliminary experimental results indicate
that selecting textual vs. spatio-temporal fused features as the contrastive view is particularly
effective. Therefore, we adopt this view as our default contrastive view. Contrastive views
from the same trajectory serve as positive samples, while those from different trajectories are
negative. Our approach is generic and can be adapted for trajectories with a variety of modal
features, fully leveraging the complementarity and correlations between different modalities.
Figure 2 shows an example of generating a contrastive view of the textual vs. spatio-
temporal fused features. For trajectory 7', we obtain the location, time, and text embeddings
and generate a fused spatio-temporal embedding as described in Section 4.1. The spatio-
temporal and textual embeddings are then input into a trajectory encoder, producing spatio-
temporal and textual vectors v’ and v, respectively. Subsequently, two one-layer MLPs,
M and M’, process v*' and v¥ to generate lower-dimensional representations h*' and h* as

follows:
b = v'Wy + by, h?Y =Wy + by (10)
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where W), and by, are learnable parameters of M, W, and by, are learnable parameters
of M’, and h*" and h* form positive pairs for contrastive learning.
We employ the normalized temperature-scaled cross-entropy loss [31] as the contrastive
objective. The loss function is defined as:
Iy exp(d(h;, hy")/7)
Lintra = _N Z lOg N
io1 2j=1 lizjiexp(d(hi, hy)/7)

an

Here, h; is the anchor sample, while h;" and h; are the positive and negative samples
of h;, respectively. The temperature parameter T controls the smoothness of the probability
distribution over the similarities of samples, influencing the contribution of positive and
negative samples to the loss function. d (-, -) is cosine similarity, and 1 is an indicator variable
that equals one if the condition is satisfied and zero otherwise.

4.3 Inter-trajectory contrastive learning component

To effectively capture relationships among multi-modal trajectories and generate generic
representations, we introduce an inter-trajectory contrastive learning component to compare
atrajectory with other trajectories. Constructing positive and negative samples for contrastive
learning is crucial, as it significantly affects model performance. Existing methods typically
construct two variants of the same trajectory and treat these variants as positive samples.
For example, for a trajectory 7;, two augmented variants, Til and Tiz, are created as positive
samples, while variants derived from 7; and another trajectory T; are considered negative
samples. However, if T; and T are similar trajectories, classifying their variants as negative
samples may hinder the model’s discriminative ability. To address this limitation, we propose
a similarity-based strategy to obtain positive and negative samples, using nearest-neighbor
trajectories as positive pairs. The distance function d(T;, T;) is defined as:

d(T;, Tj) = ds(T7, T}) + dr (T}, T}) + dw(T;", T}") (12)

Here, Tl.s s Tit, and Ti’” represent the spatial, temporal, and textual sequences of 7;, respec-
tively, and ds, dr, and dw denote the corresponding distances. We can utilize any existing
distance measure for calculation. In this paper, we select the Fréchet distance for computing
ds and dr, and the Edit distance for computing dy, as they are widely recognized distance
measurements. We use the distance between trajectories to measure their similarity: the
smaller the trajectory distance, the higher the similarity between the trajectories. To enhance
efficiency, we use a k-d tree to index trajectories and retrieve the k-nearest neighbors for each
trajectory via a k-d tree-based query algorithm. The nearest neighbor becomes a positive
sample, while trajectories beyond the k-nearest neighbors are considered negative samples.

Furthermore, we propose four data augmentation strategies to help the model capture
distinguishing features from different variants and enhance robustness: (1) Downsampling:
Downsampling reduces the sample rate of trajectories, which can increase robustness and
mitigate overfitting. Specifically, we randomly discard points from the trajectory T to generate
a variant 7’. The start and end points are preserved to maintain the route integrity. For the
remaining points, we randomly determine the probability p of whether to drop each point.
If p is less than 0.4, the point is discarded.

(2) Distorting: Distorting introduces noise to trajectories, further enhancing the model’s
robustness. Specifically, we randomly add an offset to each point in trajectory 7. For spa-
tial distortion, we add a minor location offset to each point p;, and the distorted location
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coordinate is defined as:
pid = (x; + Axi, yi + Ay), Axp ~ X, Ayi ~ X, X ~ duN(n, 0% (13)

where X, is a bounded Gaussian distribution, and d,, denotes the maximum location offset,
which has a default value of 50 meters. We set the default values of ©« and o to 0 and 0.5,
respectively. Similarly, for temporal distortion, we add random noise to the timestamp of
each point as follows:

pit =t + Ati, At; ~ Xy, Xy ~ tuN (1, 0%) (14)

where 1, represents the maximum time offset with a default value of 200 seconds. The default
values of u and o are 0 and 0.5, respectively. For textual distortion, if a POI contains only
one word, we omit it and proceed to the next. Otherwise, for each word in POI, we randomly
determine the probability p for the operation as follows: if p < 0.05, we drop the word; if
0.05 < p < 0.1, we insert a word after it; if 0.1 < p < 0.15, we replace the word. The word
to insert or replace is randomly selected from the existing keyword set.

(3) Trimming: Trimming creates sub-trajectories by cutting a prefix or a suffix (or both)
from trajectories, enabling the model to consider local patterns and detect partially overlapped
trajectories. Specifically, we remove a prefix, suffix, or both from trajectory 7', creating the
variant 7’ with the remaining points. To control the proportion of points retained in 7', we
introduce a parameter 8 with a default value of 0.8. The T is represented as:

T'={pi. pit1. -+ pl+prh i €12, [(1 = B)IT[]) s)

(4) Simplification: Simplification identifies critical trajectory points and removes less
critical ones, aiding the model in capturing distinctive features more effectively. We use the
Douglas-Peucker (DP) algorithm [41], a broadly applicable method, to simplify trajectories.
The DP algorithm starts by drawing a line segment between the endpoints of trajectory 7.
It identifies the point furthest from this line segment, creating two new segments connecting
this point to each endpoint. This process repeats recursively until all points are sufficiently
close to the line segments, with a threshold 7; of 50 meters.

Note that the choice of parameters for data augmentation is based on our empirical and
experimental findings.

The augmented variants of positive pairs, i.e., nearest-neighbor pairs, remain positive
samples, while the variants of negative pairs continue to be negative samples. This approach
facilitates more general and beneficial semantic transformations for downstream tasks. After
acquiring positive and negative samples, we proceed with training as depicted in Fig. 2.
Positive samples 7 and T’ are fed into the Multi-Modal Features Embedding module to
achieve fused embeddings. These embeddings are processed by trajectory encoders E and
E’ to produce representation vectors, which are then mapped to lower-dimensional vectors
z and 7z’ by two projection models P and P’, each comprising two fully connected layers
with ReLU activation. Negative samples are processed using the same procedure, producing
vectors denoted as z~. A fixed-size queue, Q,, stores negative samples from current and
recent past batches. We apply the InfoNCE [42] loss for model training as follows:

exp(d(z,z')/7)
& , 0] -
exp(d(z,z)/t) + Zj:l exp((z, Zj )/T)

During training, we reuse negative samples from Q, and adopt the momentum update
method to update the parameters for £’ and P’ smoothly.

Linter = —lo (16)

0p = alp + (1 —a)0g, O0p =abp + (1 —a)p (17)
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where O and 0 are the parameters of encoders E and E’, and 0p and 6p: are the parameters
of models P and P’, respectively. « is a momentum coefficient that controls the parameter
updates, with a default value of 0.999.

4.4 Multi-task learning

Finally, we incorporate the intra- and inter-trajectory contrastive learning components into a
multi-task learning framework, with the overall training loss function aggregating the intra-
and inter-trajectory contrastive losses as follows:

[/overall = ['intra + [/inter (]8)

Lintrq and Ly, are of the same magnitude, so we set their weights equally to capture both
intra- and inter-trajectory features simultaneously. The weights can be adjusted to prioritize
either intra- or inter-trajectory features for different applications, allowing the model to focus
on the desired characteristics accordingly. After model training, we can apply the encoder
E to generate trajectory representations. By jointly leveraging the intra- and inter-trajectory
contrastive learning components, CLMTR can generate semantically enriched and generic
representations applicable to diverse downstream tasks.

5 Experiments

In this section, we conduct extensive experiments to evaluate the performance of CLMTR.
Firstly, we compare the performance of our method with the state-of-the-art methods on two
real-world datasets for three downstream tasks. Secondly, we adopt ablation studies to verify
the effectiveness of critical modules of CLMTR. Thirdly, we study the impact of model
parameters. At last, we investigate the efficiency and scalability of CLMTR.

5.1 Experimental setup

Datasets We use two real-world trajectory datasets: Geolife [43] and T-Drive [44]. We employ
the AMAP API to enrich these datasets with Points of Interest (POIs) for each trajectory point.
The enriched versions of these datasets are referred to as Geolife™ and T-Drive ™, respectively.
Following state-of-the-art methods like CL-Tsim [36] and TrajCL [38], and considering
the training time and storage requirements, we set the maximum trajectory length to 200
points. Our goal is to propose a solution for multi-modal trajectory representation rather than
managing long trajectories. Future research will focus on capturing the multi-modal features
in long trajectories efficiently and effectively. Thus, trajectories exceeding 200 points are
segmented into smaller sub-trajectories, while those with fewer than 20 points are excluded
from datasets. The details of datasets are summarized in Table 1. We shuffle each dataset
and divide it into three disjoint subsets: 70% for training, 10% for validation, and 20% for
testing.

Evaluation metrics (1) For the trajectory similarity search task, we use Mean Rank (MR)
to evaluate the most similarity search and use HR@5 and R5@20 to evaluate the kNN
search. Here, HR @k signifies the hit ratio between the top-k results and the corresponding
ground-truth results, and Rk @t represents the recall of the top-k ground truth within the top-¢
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Table 1 Dataset statistics

Description Geolife™ T-Drive ™
Number of trajectories 107,843 258,704
Number of POIs 4,474 4,531
Number of points 19,412,740 17,740,902
Number of keywords per POI 5.78 4.52
Number of keywords 4,483 4,536

results. (2) For the trajectory clustering task, we use Accuracy (ACC), Rand Index (RI), and
Normalized Mutual Information (NMI) to evaluate the performance. (3) For the travel time
estimation task, we report Mean Absolute Error (MAE), Mean Absolute Percentage Error
(MAPE), and Root Mean Square Error (RMSE).

Baselines We compare CLMTR with six state-of-the-art approaches:

e At2vec [11] employs the skip-gram model to obtain spatial and temporal embeddings
and utilizes the GloVe model to obtain textual embeddings. These embeddings are then
concatenated to form the fusion embedding. Next, At2vec leverages a seq2seq model to
learn trajectory representations.

e At2vec-attn [23] modifies the multi-modal feature fusion method in At2vec by intro-
ducing a multi-layer attention mechanism.

e E2DTC [13] focuses on learning cluster-friendly trajectory representations through joint
training with reconstruction loss and cluster-oriented loss.

e ST2Vec [29] is a supervised method to learn trajectory representations, which employs
spatio-temporal trajectory similarities as training signals to approximate the similarity
function.

e CL-TSim [36] utilizes a contrastive learning mechanism to learn trajectory representa-
tions for effective and efficient similarity computation.

e TrajCL [38] proposes a dual-feature self-attention-based contrastive learning framework
for obtaining trajectory representations.

For methods that focus on spatial and temporal features, including E2DTC, ST2Vec, CL-
TSim, and TrajCL, we have extended them by integrating the multi-modal feature embedding
and fusion methods used by At2vec, thus supporting multi-modal trajectory representation
learning.

Parameter settings We set the fused embedding dimension to 256. The number of encoder
layers is 2, and the number of attention heads is 4. The length of the grid cells is set to 50
meters. The maximum number of training epochs is 50, and we early stop after 10 consecutive
epochs without improvements in the loss. We use the Adam optimizer with an initial learning
rate of 0.001, which is decayed by 0.5 every 10 epochs. Moreover, the batch size is set to
256, the negative samples queue size is 2,048, and the temperature parameter is 0.05.

Environment settings Experiments are conducted on a Linux server with CUDA 11.7 and
two NVIDIA GeForce RTX 3090 GPUs, each with 24GB memory. All approaches are imple-
mented in Python 3.9 with PyTorch 2.0.1.

5.2 Performance comparison

Overall performance Table 2 presents the overall results. We use ‘1’ (and ‘|, ”) to indicate that
a larger (and smaller) result is better. The best results are highlighted in bold. The Euclidean
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distance between trajectory representations is employed to approximate the trajectory simi-
larity. We can observe that CLMTR outperforms other methods on two real-world datasets
for three tasks in almost all metrics. CLMTR surpasses At2vec and At2vec-attn as they over-
look the inter-trajectory relationships and correlations among diverse modal features within
a trajectory. Although E2DTC performs well on the clustering task as it uses reconstruction
and cluster-oriented loss for joint training, its performance in other tasks is comparable to
that of At2vec. CLMTR outperforms ST2Vec, which does not comprehensively capture the
relationship among different modal features. Additionally, CLMTR surpasses CL-TSim and
TrajCL as they fail to consider the correlations among different modal features within same
trajectories and lack an effective multi-modal feature fusion method.

Performance of trajectory similarity search (1) Most similar trajectory search. This task
aims to find the trajectory T’ in dataset D, that is most similar to a given query trajectory
T, from dataset D,. Specifically, we randomly select N, trajectories from the test dataset,
denoted as D, . For each trajectory T, in D, we generate its downsampled version 7,” and
include it in the dataset D;. We then select other N, trajectories from the test dataset that
do not overlap with D, and add them to Dy. The default values for N, and Ny are 1,000
and 3,000, respectively. For each T; in D,, we compute the similarity between T, and all
trajectories in Dy and determine the MR of T,,” by ranking the similarities between T, and
each trajectory in Dy in descending order. Ideally, T, should rank first, as it is generated
from T,.

(2) k-nearest trajectory search Given a query trajectory, this task aims to find its top-k
similar trajectories from the target dataset. For each T, in D, we obtain the kNNs from
the dataset Dy as its ground truth. Next, we construct the transformed dataset Dq’ from D,
through a downsampling approach. Finally, for each query trajectory 7;," in D,’, we find
its kNNs from the dataset D,y and compare the result with the corresponding ground truth.
Table 2 shows that CLMTR outperforms all baselines in the most similar and k-nearest search
tasks, demonstrating CLMTR’s effectiveness in identifying similar trajectories.

Performance of trajectory clustering We randomly select 1,000 trajectories from the test
dataset, termed D,.. For each trajectory 7; in D., we create two sub-trajectories: one consisting
of the odd-indexed points, denoted as Ti“ = {p1, p3, p5, - - - }, and the other consisting of
the even-indexed points, denoted as Tib = {p2, p4, ps, - -+ }- Ti“ is added to the dataset D,
and Tl.b is added to the dataset Dj. Subsequently, hierarchical clustering is applied to D, to
derive the ground truth clustering result, and the clustering result of D), is obtained by the
same method. Ideally, the clustering results of D, and D; should be identical, as each Ti“
in D, and each Tl.b in Dy, originate from the identical trajectory 7;. As shown in Table 2,
CLMTR achieves comparable performance to E2DTC on the T-Drive™ dataset and surpasses
other baselines across two datasets because E2DTC is specifically trained for the clustering
task. The results indicate that CLMTR effectively generates semantically enriched trajectory
representations, leading to accurate performance.

Performance of trajectory travel time estimation This task estimates the travel time from a
given origin and destination, considering the trajectory representation and departure time. We
employ a two-layer, fully connected network to predict the travel time. The MSE is utilized
as the optimization objective for this regression model. Table 2 demonstrates that CLMTR
consistently outperforms all baselines because it can capture underlying spatial-temporal
semantics, thereby obtaining accurate results.
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5.3 Ablation study

We conduct ablation experiments to evaluate the effectiveness of each component in CLMTR.
We only present the results on T-Drive™ for brevity as the performance trends observed on
Geolife™ are similar. Figure 3 shows the results.

Impact of multi-modal features embedding We evaluate this component with the following
variants: (1) w/ L-SkipGram: this variant utilizes the skip-gram algorithm for location embed-
ding. (2) w/ T-SkipGram: the variant employs a skip-gram model for time embedding. (3) w/
Glove: the variant adopts the Glove model for text embedding. (4) w/ Concat: this variant
employs the concatenation method to obtain the multi-modal fused embedding. As shown in
Fig. 3, CLMTR outperforms w/ L-SkipGram, demonstrating the effectiveness of our location
embedding technique in capturing spatial proximity. Similarly, CLMTR outperforms w/ T-
SkipGram because w/ T-SkipGram ignores periodic temporal patterns. Furthermore, CLMTR
is superior to w/ Glove, as the latter fails to capture complex contextual relationships effec-
tively. CLMTR surpasses w/ Concat, indicating the limitations of the concatenation method
in adaptively leveraging the weights of different modal features within a trajectory.

Impact of intra-trajectory contrastive learning component We evaluate this component
with the variant, denoted as w/o Intra-CL, which lacks the intra-trajectory contrastive learning
method. The result shows that CLMTR outperforms w/o Intra-CL because the latter does not
effectively capture the correlations and complementarities among different modal features
within the same trajectory, failing to generate semantically enriched representations.

Impact of inter-trajectory contrastive learning component We evaluate this component
with several variants: (1) w/o Inter-CL: this variant removes the inter-trajectory contrastive
learning method from CLMTR. (2) w/ LSTM: the variant substitutes the trajectory encoder
with an LSTM. The result demonstrates that CLMTR is superior to w/o Inter-CL, thereby
indicating the effectiveness of the inter-trajectory contrastive learning in capturing trajec-
tory relationships and enhancing trajectory-level feature learning. Furthermore, w/ LSTM
yields the worst performance among all variants due to the inherent limitations of LSTMs in
capturing long-term dependencies within trajectories.

Impact of data augmentation strategies Data augmentation strategies are critical in con-
trastive learning for capturing multi-modal characteristics and improving model performance.
We show performance with different method pairs to explore the effectiveness of our four
proposed trajectory data augmentation strategies. For brevity, we present only the similarity

7/ CLMTR EEE w/o Inter-CL == w/ T-SkipGram faa% w/ Glove
B w/o Intra-CL I w/ L-SkipGram N2 w/ Concat w/ LSTM

0.6

0.4

0.2

/
?
| |
| |
7
||

0.0
(a) Similarity search (MR ( 1)) (b) Clustering (NMI ( 1)) (c) Travel time estimation (MAPE ( { ))

Fig.3 Ablation study results on T-Drive

@ Springer



Geolnformatica

Downsample Trim  Distort Simplify Downsample Trim  Distort Simplify

Downsample Trim  Distort ~Simplify

(a) MR({) (b) HR@5 (1) (d) RI (1)

Fig.4 Impact of data augmentation methods

search and clustering results on the T-Drive™ dataset. Figure 4 shows the performance of
different combinations of augmentation strategies. In Fig. 4(a), lighter colors represent better
performance, while darker colors indicate better performance in the remaining subfigures.
The results confirm the importance of the proposed augmentation methods. For example,
we observe that downsampling is a simple yet effective strategy. Overall, downsampling and
trimming perform best in both tasks. Consequently, we adopt them as our default augmenta-
tion methods.

5.4 Parameter study

We further conduct parameter sensitivity analysis for crucial hyperparameters. Note that a
smaller MR and MPAE value indicates better performance, whereas a larger NMI value
corresponds to better results. As shown in Fig. 5(a), the performance initially improves as the
embedding dimension d increases, followed by a decline when d becomes excessively large
since a higher embedding dimension may lead to overfitting. In Fig. 5(b), the performance
improves initially as the number of encoder layers / increases but then drops when / exceeds
2, as more layers may also lead to overfitting. As depicted in Fig. 5(c), the performance
declines when the negative sample queue N, is too large since a large queue may include
too many “hard” negative samples that differ marginally from the given anchor. Figure 5(d)
shows that the performance improves as the batch size increases but drops when the batch size
reaches 512, as a large batch may also include too many “hard” negative samples. We select
the hyperparameter values that yield the best results as the default values for the experiments.

5.5 Model efficiency and scalability

As shown in Table 3, the training time of CLMTR is about one hour and ten minutes, which is
acceptable in practice. The complex recurrent operations of At2vec, At2vec-attn, and E2DTC
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(a) Impact of embedding dimension (b) Impact of the number of encoder layers
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(c) Impact of negative samples queue size (d) Impact of training batch size

Fig.5 Parameter sensitivity analysis on T-Drive™
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Table 3 Training time (seconds) on T-Drive ™ and Geolife ™

CL-TSim CLMTR TrajCL ST2Vec At2vec-attn At2vec E2DTC

T-Drive 4,108 4,210 5,835 6,950 6,980 7,490 9,500
Geolife 3,960 4,015 5,670 6,524 6,670 7,260 9,324

contribute to their longer training times. Figure 6(a) shows the inference time of embedding
50k-250k trajectories. Since At2vec and E2DTC share the same encoder structure, we omit
the result of E2DTC. CLMTR is more efficient than methods based on RNN models, such
as At2vec, At2vec-attn, and ST2Vec. This is because RNN models require O (L) sequen-
tial operations to process a trajectory, whereas a self-attention model only requires an O(1)
operation. Here, L represents the length of the trajectory. CLMTR is slightly slower than
other self-attention models as it involves the intra-trajectory contrastive learning compo-
nent. Figure 6(b) shows time costs for the most similar trajectory search. The time costs of
learning-based approaches encompass the time for representation generation and similarity
computation. We observe that learning-based approaches exhibit a substantial speed advan-
tage, exceeding traditional trajectory methods by an order of magnitude. Moreover, both the
inference time and the time required for similarity search of CLMTR increase linearly with
the data volume, indicating that CLMTR is scalable for large datasets.

5.6 Discussion

In this section, we analyze the limitations of CLMTR and propose future research direc-
tions. First, due to constraints related to training time and storage requirements, we set the
maximum trajectory length to 200 points. In the future, we aim to develop methods that can
effectively capture the intricate long-term dependencies of multi-modal features in longer
trajectories. We also plan to explore lightweight models to further reduce computational
costs and improve scalability. Additionally, we currently use pre-trained BERT to extract
textual features from trajectories. In the future, we intend to fine-tune BERT specifically for
trajectory-related tasks, thereby adapting it more effectively to the spatio-temporal domain.
Lastly, while we currently focus on trajectories in Euclidean space, many traffic-related
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Fig.6 Model efficiency and scalability analysis
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applications necessitate consideration of the road network. Incorporating the road network
structure into multi-modal trajectory representation and obtaining generic representations
suitable for road network-based tasks remain challenges that we aim to address in future
work.

6 Conclusion

In this paper, we propose a generic contrastive learning-based multi-modal trajectory
representation learning framework, namely CLMTR. CLMTR incorporates intra- and inter-
trajectory contrastive learning components. These components collectively capture the
correlations among diverse modal features within a trajectory and the relationships among
different trajectories, generating semantically enriched and generic trajectory representa-
tions that can be applied to various downstream tasks. CLMTR also involves multi-modal
feature embedding methods coupled with an attention-based fusion method, capturing the
multi-modal characteristics and adaptively obtaining the unified embeddings. We conduct
extensive experiments on two real-world trajectory datasets for three downstream tasks. The
experimental results demonstrate the superior performance of CLMTR compared with the
state-of-the-art approaches.
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